Volume 25, Issue 2 (1-2007)                   2007, 25(2): 151-165 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

M. Mashayekhi, S. Ziaei-Rad, and J. Parvizian. Ductile Damage Evolution under Triaxial Stress Conditions: Computational and Experimental Evaluations. Journal of Advanced Materials in Engineering (Esteghlal) 2007; 25 (2) :151-165
URL: http://jame.iut.ac.ir/article-1-397-en.html
Abstract:   (6325 Views)
The continuum mechanic simulation of micro-structural damage process is important in the study of ductile fracture mechanics. In this paper, the continuum damage mechanics model formulation proposed by Lematire has been validated against ductile damage evolution experimentally measured in A533B-C1 steel under stress triaxiality conditions. First, a procedure to identify the model parameters from test was defined. Then, the finite element model was used to simulate the experiment carried out on a notched flat rectangular bar. Good agreement was observed between the experimental results and finite element predictions. Next, the identified parameters on A533B-C1 steel were used to simulate the results from a conventional tensile test by finite element method. The specimen was prepared according to ASTM E08 standard. The stresses at necking stage and ultimate load calculated by the damage based method were compared with those obtained from the test. The comparisons indicate a good agreement between the simulated and the experimental results.
Full-Text [PDF 3734 kb]   (1528 Downloads)    
Type of Study: Research | Subject: General
Received: 2014/10/25 | Published: 2007/01/15

Add your comments about this article : Your username or Email:
CAPTCHA

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb