Volume 34, Issue 2 (Journal of Advanced Materials- Summer 2015)                   2015, 34(2): 49-59 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samadi A, Ghayebloo M. Effect of Al-5Ti-B Inoculant Addition on the Graded Microstructure of Centrifugally Cast Al-13.8 wt.% Mg2Si Composite. Journal of Advanced Materials in Engineering (Esteghlal) 2015; 34 (2) :49-59
URL: http://jame.iut.ac.ir/article-1-668-en.html
Sahand University of Technology, Tabriz, Iran , samadi@sut.ac.ir
Abstract:   (10711 Views)
To evaluate the effect of inoculant addition on functionally graded microstructure of centrifugally cast Al-Mg2Si composites, two cylinders of Al-13.8 wt.% Mg2Si with and without the addition of 1 wt.% Al-5Ti-B inoculant were cast in a vertical centrifugal casting machine. The chemical composition, microstructures and microstructural phases of the different radial sections of the cast cylinders were studied using induction coupled plasma (ICP) method, optical/scanning electron microscopes, and X-ray diffractometry, respectively. The results showed that in the inoculant content cylinder, owing to the prevailing thermal regime as well as the specific mode of eutectic solidification in this composite, the titanium and boron compounds were segregated towards the middle layer of the cylinder and caused the formation of primary Mg2Si particles and non-eutectic Al () in this layer. In addition, due to the effect of centrifugal force during solidification, a higher volume fraction of the light primary Mg2Si particles, according to Stocks law, was segregated towards the inner layer of the cast cylinders.
Full-Text [PDF 778 kb]   (2748 Downloads)    
Type of Study: Research | Subject: Surface engineering and coatings
Received: 2015/09/2 | Accepted: 2015/09/2 | Published: 2015/09/2

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb