In this research, nanoparticles of La0.8Sr0.2MnO3 with mean crystallite size of 20 nm have been prepared by sol gel method. The sample has been characterized by X-Ray Diffraction (XRD) using Rietveld refinement, Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The static magnetic properties such as saturation magnetization, effective magnetic moment and ferromagnetic phase fraction of the nanoparticles are determined by different techniques using magnetic hysteresis loop at room temperature. The magnetic dynamic properties of crystalls are studied by measuring AC magnetic susceptibility versus temperature at different frequencies. Néel-Brown, Vogel-Fulcher, critical slowing down models and empirical parameters are used to distinguish between superparamagnetic and superspin glass behaviour in the nanoaprticles. By fitting the experimental data with the models, relaxation time, critical view, magnetic anisotropy energy and effective magnetic anisotropy constant have been estimated. The obtained results support the presence of interacting superparamagnetic behaviour between magnetic nanoparticles of La0.8Sr0.2MnO3.