Volume 37, Issue 1 (Journal of Advanced Materials-Spring 2018)                   2018, 37(1): 55-67 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghzade S, Emadi R, labbaf S. Fabrication and Evaluation of the Mechanical and Bioactivity Properties of a Nano Structure-hardystonite Scaffold by the Space Holder Method. Journal of Advanced Materials in Engineering (Esteghlal) 2018; 37 (1) :55-67
URL: http://jame.iut.ac.ir/article-1-808-en.html
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran. , s.sadeghzade@ma.iut.ac.ir
Abstract:   (9264 Views)
In the recent three decades, Ca-Si-based ceramics have received great attention as an appropriate candidate for tissue engineering applications due to their remarkable bioactivity, biocompatibility, and good bone formation ability. Hardystonite is currently recognized as a bioactive and biocompatible bio-ceramic material for a range of medical applications. In the present study, for the first time, hardystonite powder and 3D hardystonite scaffold with interconnected porosity were produced using mechanical alloying synthesis and the space holder method, respectively. It was found that pure nano-crystalline hardystonite powder formation occurred following 10 h of milling and subsequent sintering at 800  C° for 3 h. The measured crystallite size of particles and the hardystonite scaffold was found to be 28 ± 2 and 79 ± 1 nm, respectively. The results also showed that nanostructured hardystonite scaffolds with the compressive strength and modulus of 0.35 ± 0.02 and 10.49 ± 0.21 MPa, the porosity of 81 ± 1% , and pores size range of 200–500 μm were successfully synthesized after sintering at 1250 °C for 3 h. During the sintering process, NaCl (80wt%, 300-420 µm), as the spacer agent, gradually evaporated from the system,producing porosity in the scaffold. Simulated body fluid (SBF) was used to evaluate the apatite formation ability of the scaffolds. The results showed that the formation of an apatite layer on the scaffold surface could be considered as a bioactivity criterion.
Full-Text [PDF 1287 kb]   (2604 Downloads)    
Type of Study: Research | Subject: General
Received: 2016/08/19 | Accepted: 2017/12/26 | Published: 2018/05/30

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb