Shahzamani S, Toroghinejad M R, Asharfi A. MODELING AND FABRICATION OF Al/Al2O3 COMPOSITES USING ACCUMULATIVE ROLL BONDING AND PLASMA ELECTROLYTIC OXIDATION. Journal of Advanced Materials in Engineering (Esteghlal) 2021; 40 (2) :83-109
URL:
http://jame.iut.ac.ir/article-1-1117-en.html
Department of Material Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran , toroghi@iut.ac.ir
Abstract: (2125 Views)
In this study, Al/Al2O3 composite was produced by accumulative roll bonding (ARB) process coupled with the plasma electrolytic oxidation (PEO) process. The alumina was grown on Al sheets by electrolyte technique with three different thicknesses (10, 20, and 40 µm). The results showed that incorporation of alumina up to 3.22 vol.% in aluminum matrix enhanced the yield and tensile strength of the composite, whereas increasing the amount of alumina up to 6.25 vol.% deteriorated the tensile properties. In the last part, a serial sectioning process was employed to develop a three-dimensional (3D) representation of the microstructure of Al2O3 particles reinforced Al composite for visualization and finite-element modeling (FEM).
Type of Study:
Research |
Subject:
Forming and mechanical properties Received: 2020/12/20 | Accepted: 2021/06/13 | Published: 2021/09/1