Asadi Khanouki M T, Tavakoli R, Aashuri H. The Effect of Temperature on the Fracture Surface Morphology and Ductility of La55Al25Ni5Cu10Co5 BMG. Journal of Advanced Materials in Engineering (Esteghlal) 2019; 38 (2) :11-24
URL:
http://jame.iut.ac.ir/article-1-999-en.html
1. Department of Materials Engineering and Metallurgy, Shahid Bahonar University of Kerman, Kerman, Iran. , mota.asadi@gmail.com
Abstract: (5508 Views)
In this research, the effect of temperature on the mean size of fracture surface features, as well as the relation between fracture surface morphologies and ductility of a La-based BMG as a relatively brittle alloy, was systematically investigated. After producing the alloy, three-point bending experiments, over a wide range of temperatures, were conducted on the samples; then the fracture surfaces were analyzed using scanning electron microscopy. The results demonstrated that the width of stable crack growth region (ΔW) was increased upon ductility (δp). Conversely, the mean size of the features on both stable (Ds) and fast (Df) crack growth regions and also, shear offset width (ΔL) were found to decrease with increasing ductility. In this case, the shear band instability was reduced, and the plastic strain could be more homogeneously distributed on the shear bands. The similarity of ΔL and Ds values suggested that the formation of vein pattern was caused by steak-slip behavior and multiple-step sliding inside the shear band through the fluid meniscus instability mechanism. Furthermore, the results obtained from correlation between ductility and fracture surface morphologies in the BMG indicated that the size of features was reduced with increasing ductility.
Type of Study:
Research |
Subject:
Special Received: 2018/09/18 | Accepted: 2019/04/15 | Published: 2019/09/15