۷ نتیجه برای شفیعی
نادر ستوده، علی سعیدی، علی شفیعی و نیکلاس جی. ولهام،
دوره ۲۵، شماره ۱ - ( ۴-۱۳۸۵ )
چکیده
در این تحقیق دگرگونی فازی آناتاز به روتیل توسط عملیات حرارتی و آسیاکاری بررسی شد. فرایندآسیاکاری در دو نوع آسیا (آسیای سیارهای و تامبلر) با نسبت وزنی پودر به گلوله ۱ به ۴۰ و در زمانهای گوناگون (۲ تا ۴۸ ساعت ) انجام شد. همچنین تعدادی آزمایش بر روی نمونه های آسیاکاری نشده در کوره لولهای در دما و زمانهای گوناگون انجام شد. نتایج به دست آمده از آزمایشها نشان داد که دگرگونی آناتاز به روتیل در نمونه های آسیاکاری نشده بسیار کند است به طوری که در دمای ۹۸۰ درجه سانتیگراد پس از گذشت ۴۸ ساعت، دگرگونی کامل شد در حالی که در نمونه های آسیاکاری شده، سرعت دگرگونی بیشتر بود. انرژی اکتیواسیون دگرگونی فازی آناتاز به روتیل در نمونه هایی که آسیاکاری نشده بودند، ۴۴۰ کیلوژول بر مول به دست آمد. آزمایشهای گوناگون نشان داد سرعت دگرگونی در آسیای سیارهای بیشتر از آسیای تامبلر است، به طوری که در آسیای سیارهای بعد از گذشت ۱۶ ساعت، دگرگونی تقریباً کامل میشود اما در آسیای تامبلر پس از گذشت ۴۸ ساعت دگرگونی کامل نشد و مقداری فاز آناتاز در نمونه موجود بود. نتایج XRD نشان داد که دگرگونی آناتاز به روتیل درهر دونوع آسیا، از طریق فازمیانی سریلانکیت انجام میشود در حالی که این فاز درنمونه هایی که آسیاکاری نشده بودند، مشاهده نشد.
نادر ستوده، علی سعیدی، علی شفیعی و نیکلاس جی ولهام،
دوره ۲۷، شماره ۲ - ( ۱۰-۱۳۸۷ )
چکیده
مهدی علیزاده، حسین ادریس و علی شفیعی، ،
دوره ۲۷، شماره ۲ - ( ۱۰-۱۳۸۷ )
چکیده
منیر برادران، سیده سارا شفیعی، فتح الله مضطرزاده، سیده زهرا مرتضوی،
دوره ۳۵، شماره ۳ - ( نشریه مواد پیشرفته در مهندسی- پاییز ۱۳۹۵ )
چکیده
در سالهای اخیر استفاده از نانومواد در داربستهای مهندسی بافت استخوان بهدلیل تقلید از ساختار بافت طبیعی استخوان که دارای یک ساختار نانوکامپوزیتی درهم آمیخته با یک ماتریس سه بعدی است، مورد توجه قرار گرفته است. در این میان، پلیکاپرولاکتان بهعنوان یک زیست پلیمر، درساخت داربستهای مهندسی بافت استخوان مورد استفاده قرار گرفته است. هدف از این پژوهش، ساخت داربست نانوکامپوزیتی پلیکاپرولاکتان/ هیدروکسید دوگانه لایهای با خواص مکانیکی، زیست فعالی و زیستی مناسب برای کاربرد در مهندسی بافت استخوان اسفنجی است. برای ساخت داربستها از ترکیب دو روش فروشویی ذرهای و خشکایش انجمادی و همچنین برای مطالعات سلولی از سلولMG۶۳ (استئوسارکومای استخوان) استفاده شد. تحلیل طیف سنج طول موج انتشاری از نمونهها، توزیع یکنواخت فاز سرامیکی در بستر پلی کاپرولاکتان را تأیید کرد. نتایج بررسی مکانیکی داربستها حاکی از افزایش مدول یانگ بعد از اضافه شدن فاز سرامیکی بود. بررسیهای میکروسکوپی نشان داد که داربستها از تجمع ریزکرهها پس از اضافه شدن فاز سرامیکی حاصل شدند و اندازه تخلخلها بین ۱۰۰ تا ۶۰۰ میکرومتر گزارش شد. همچنین با افزودن فاز سرامیکی آبدوستی پلی کاپرولاکتان افزایش یافت، اما تشکیل هیدروکسی آپاتیت در محیط شبیهسازی شده بدن، بهعلت وجود یون منیزیم بهتأخیر افتاد. ارزیابیهای سلولی، اتصال سلولها و تکثیرشان روی داربستها را تأیید کردند. نتایج نشان میدهد که داربستهای ساخته شده قابلیت کاربرد در مهندسی بافت استخوان اسفنجی را دارند.
سیما ترکیان، علی شفیعی، محمدرضا طرقی نژاد، مرتضی صفری،
دوره ۳۵، شماره ۳ - ( نشریه مواد پیشرفته در مهندسی- پاییز ۱۳۹۵ )
چکیده
در این پژوهش تاثیر زمان عملیات زیر صفر روی رفتار تریبولوژیکی و ریزساختار فولاد سخت شونده سطحی ۵۱۲۰AISI ، مورد بررسی قرار گرفته است. به این منظور نمونههای دیسکی شکل در دمای ۹۲۰ درجه سانتیگراد به مدت ۶ ساعت کربندهی و در هوا خنک شدند و پس از آستنیتهکردن درروغن سرمایش شدند؛ سپس بلافاصله پس از سرمایش و سنباده زنی، نمونهها به مدت ۱، ۲۴، ۳۰ و ۴۸ ساعت در نیتروژن مایع نگهداری شدند و در دمای ۲۰۰ درجه سانتیگراد بهمدت ۲ ساعت بازگشت شد. آزمون سایش به روش گلوله روی دیسک با استفاده از ساچمه کاربید تنگستنی با دو بار ۸۰ و ۱۱۰ نیوتن انجام شد. بهمنظور مشاهده کاربیدها از محلول کلرید مس (۵ گرم)+ هیدروکلریک اسید (۱۰۰ میلیلیتر) + اتانول (۱۰۰ میلیلیتر) استفاده شد. سختی نمونهها به روش ویکرز با بار ۳۰۰ نیوتن قبل و بعد از بازگشت اندازهگیری شد. درصدآستنیت باقیمانده از روش تفرق اشعه X محاسبه شد؛ میزان آستنیت باقیمانده در نمونه CHT، ۸ درصد، ۱DCT، ۴ درصد و در بقیهی نمونهها به میزانی کاهش یافته است که در الگوی پراش پیکی مشاهده نشد. نتایج نشان داد که عملیات زیر صفر عمیق منجر به افزایش سختی در تمام نمونهها شده و میزان مقاومت سایشی در نمونهها در هر دو بار اعمالی ۸۰ و ۱۱۰ نیوتن، در زمانهای ۱ و ۲۴ ساعت نسبت به نمونه عملیات زیر صفر نشده افزایش و در نمونههای ۳۰ و ۴۸ ساعت عملیات زیر صفر شده کاهش یافته است؛ بهگونهای که نمونهی ۴۸ ساعت عملیات زیر صفر شده دارای کمترین مقاومت سایشی است. علت افزایش سختی نمونهها بهدلیل کاهش میزان آستنیت باقیمانده در اثر عملیات زیر صفر عمیق و دلیل کاهش مقاومت سایشی نمونهها پس از ۲۴ ساعت، رشد کاربیدها و توزیع غیریکنواخت آن در ریزساختار و در نتیجه ضعیف شدن زمینه بوده است؛ بنابراین مدت زمان ۲۴ ساعت عملیات زیر صفر عمیق بر فولاد ۵۱۲۰ زمانی بهینه است.
بهمن خرمی مخوری، علی شفیعی،
دوره ۳۵، شماره ۴ - ( نشریه مواد پیشرفته در مهندسی- زمستان ۱۳۹۵ )
چکیده
در این پژوهش پوشش نیترید تیتانیوم با استفاده از واکنش گرهای TiCl۴، N۲، H۲ و Ar روی فولاد AISI H۱۳ بهوسیله فرایند پوششدهی رسوب شیمیایی بخار به کمک پلاسما ایجاد شد. پوشش ها در دماهای مختلف زیرلایه (۴۶۰، ۴۸۰ و ۵۱۰ درجه سانتیگراد) ایجاد شدند. آزمون سایش از نوع ساچمه بر روی دیسک برای تعیین مکانیزم سایش در دمای بالا (۴۰۰ درجه سانتیگراد) و دمای پایین (۲۵ درجه سانتیگراد) انجام گرفت. خواص و ترکیب شیمیایی پوشش با استفاده از میکروسکوپ الکترونی روبشی، پراش اشعه ایکس و ریزسختی سنجی مورد ارزیابی قرار گرفت. نتایج آزمون سایش در دمای محیط بر حسب نرخ سایش بیان شد. آزمون سایش در دمای محیط نشان داد که پوشش TiN ایجاد شده در دمای ۴۶۰ درجه سانتیگراد دارای کمترین میزان کاهش وزن است و این پوشش دارای بیشترین میزان سختی است. بهترین مقاومت به سایش برای پوششی با بیشترین سختی (۱۸۰۰ ویکرز) است. مکانیزم سایش با تغییر دمای سایش تغییر میکند. مشاهدات مسیر سایش نشان داد که سایش در دمای پایین بهصورت خستگی سطحی است در حالی که سایش در دمای بالا از نوع چسبان است.
سیده سارا شفیعی، مهناز شوندی، یگانه نیک اختر،
دوره ۳۹، شماره ۴ - ( نشریه مواد پیشرفته در مهندسی- زمستان ۱۳۹۹ )
چکیده
داربستهای مهندسی بافت، چارچوبهای زیستی هستند که از رشد، تکثیر و تمایز سلولها در بدن حمایت میکنند. در این میان، داربستهای نانولیفی بهشکل مناسبی از لحاظ مکانیکی و زیستی از زمینه خارج سلولی تقلید میکنند. این داربستها نقش مؤثری در بازسازی و ترمیم بافت ایفا میکند. یکی از روشهای تهیه داربستهای نانولیفی با خواص دستکاری شده، افزودن نانوذرات به زمینه پلیمری ( نانوکامپوزیت) است. در این پژوهش، الیاف یکدست از جنس پلیکاپرولاکتون تقویت شده با نانورس هیدروکسید دوگانه لایهای با درصدهای ۰/۱ درصد تا ۱۰ درصد وزنی توسط روش الکتروریسی تهیه شد. افزودن فاز نانورس به فاز پلیمری باعث کاهش قطر الیاف و بهبود خواص مکانیکی شد. بهعلاوه، حضور نانوذرات رسی در بستر پلیکاپرولاکتون بهشکل قابل توجهی موجب افزایش چسبندگی سلولها و تمایز سلولهای چربی شد. نتایج نشان میدهد میتوان از داربستهای الکتروریسی شده پلیکاپرولاکتون تقویت شده با نانوذرات رسی در کاربردهای مهندسی بافت نرم استفاده کرد.