ابوالقاسم صیادیان، کامبیز بدیع، محمد شهرام معین و نصرالله مقدم،
دوره ۲۳، شماره ۲ - ( ۱۰-۱۳۸۳ )
چکیده
مدلسازی آماری HMM رویکردی پرکاربرد در سیستمهای بازشناسی گفتار پیوسته و گسسته است. توزیع احتمال بردارهای مشاهدات هر حالت پنهان مدل، به دو روش پیوسته۳ یا گسسته۴ تخمین زده میشوند. عملکرد توزیع احتمال پیوسته (با مدلسازی GMM۵) بالاتر از عملکرد توزیع احتمال گسسته (با مدلسازی VQ۶) است. ولی چنانچه بخواهیم از رویکرد HMM برای بازشناسی گفتار گسسته با دایره لغات وسیع استفاده کنیم، هزینه محاسباتی مرحله بازشناسی با افزایش تعداد لغات، به نحو چشمگیری افزایش مییابد. بدین لحاظ در بازشناسی گفتار گسسته با دایره لغات وسیع، از توزیع احتمال گسسته به منظور کاهش هزینه محاسباتی و امکان پیادهسازی بی درنگ۷ استفاده میشود. برای جبران کاهش دقت و عملکرد مدلسازی DD-HMM، استفاده از درونیابی فازی FI مرسوم است. در این تحقیق روش درونیابی گوسی که دارای پشتوانه نظری قویتر نسبت به FI است ارائه کردهایم. کارایی دو روش درونیابی KNNGI و FI در بازشناسی ۱۵۰۰ کلمه فارسی مورد تحقیق و بررسی قرار دادیم. نتایج این تحقیق نشان میدهد که دقت و انعطافپذیری درونیابی KNNGI بیشتر از روش FI است.