Search published articles


Showing 2 results for Eshaghi

M. Hajfarajzadeh, A. Eshaghi, A. Aghaei,
Volume 37, Issue 4 (Journal of Advanced Materials-winter 2019)
Abstract

A TEOS-GPTMS nano-hybrid thin film was deposited on the polymethyl methacrylate (PMMA) substrate by a sol-gel dip coating method. Morphology, roughness and surface chemical bonding of the thin films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy(FE-SEM), atomic force microscopy, and Fourier transform infrared spectroscopy methods, respectively. UV-vis spectrophotometer was used to measure the transmittance spectra of the samples. Also, the adhesion and hardness of the coatings were investigated using pencil hardness the adhesion tape test and the test, respectively. XRD results proved that the thin film had an amorphous structure. Also, FE-SEM images indicated that addition of GPTMS to the TEOS yielded a crack-free thin film. Based on the UV-vis spectroscopy results, the transmittance of the polymer substrate in the visible region was increased by the deposition of the nano-hybrid coating. Moreover, the hardness of the PMMA substrate was increased from 3H to 6H by the deposition of the nano-hybrid thin film.  Also, tape test confirmed the  high adhesion of the nano-hybrid thin film on the PMMA substrate. Consequently, the transparent organic-inorganic GPTMS-TEOS  hybrid coating can be used as a scratch resistant coating on the PMMA substrate.

M. Maniei, A. Eshaghi, A. Aghaei,
Volume 38, Issue 2 (Journal of Advanced Materials-Summer 2019)
Abstract

In this research, MgF2-2%SiO2/MgF2 thin films were applied on a glass substrate. At first, MgF2 thin films with the optical thickness were deposited on the glass slide substrates. Then, MgF2-2%SiO2 thin films were deposited on the glass coated with MgF2 thin films. Finally, the nanocomposite thin films were surface treated by the PFTS solution. Characterization of the thin film was done by X-Ray defractometry (XRD), attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR), UV-Vis spectroscopy, and atomic force microscopy (AFM) techniques. Also, the hydrophobic properties of the samples were investigated by measuring the contact angle of the water. The results showed that the deposition of the six layer MgF2 thin films on the two sides of the glass substrate increased the transmission up to 96.4%. For the glass deposited by MgF2-2%SiO2 nanocomposite thin films, transmission was reduced to 94.4%,   with its transmission being higher than the pure glass. Also, the water contact angle (WCA) analysis determined that the contact angle of the water droplet on the MgF2-2%SiO2 nanocomposite thin film coated glass was decreased. On the other hand, the contact angle of the water droplet on the MgF2-2%SiO2 nanocomposite thin film coated glass after modification with the PFTS solution was increased up to 119o. So, MgF2-2%SiO2 nanocomposite thin films could be used as an antireflective and self-cleaning coating on the surface of the optical devices.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb