Showing 4 results for Esmaeili
S. M. Miresmaeili and S. Shabestari,
Volume 25, Issue 1 (7-2006)
Abstract
The formation of microporosity in modified Al-Si alloys has been reviewed in the present study. A major concern in modification is the increased tendency to form microporosity in the macro-shrinkage free Al-Si alloy castings. It has also been demonstrated that at low hydrogen contents (0.1cc/ 100g, Al), where only shrinkage porosity should occur, the effect of Sr-modification on porosity content is not considerable, indicating that the increase in porosity is due to an increase in gas porosity. Modification treatment, however, does not add hydrogen to the melt, nor does it increase the rate of regassing of the liquid, revealing that it can not enhance pore formation by increasing the melt hydrogen content. Modification treatment raises the freezing range (4-10 oC), but this increased freezing range exerts only a very small effect on microporosity formation, which cannot, by itself, explain the increased tendency to microporosity formation observed in modified alloys. The presence of modifiers slightly decreases the surface tension of the melt (5%), although this decrease in surface tension is not sufficiently high to considerably enhance pore formation in modified alloys. Many researchers have reported that modification treatment might favour the formation of porosity due to its effect on oxide use in the heterogeneous pore formation although the systematic observation of pores has shown that SrO does not take part in pore fomation in Sr-modified alloys. Strontium and other modifiers which increase pore formation (Na and Ca) in Al-Si alloys have a high chemical affinity to form complex intermetallic compounds with Si and Al. Systematic observation of pores have shown that Sr-rich intermetallics take part in pore formation. Thus, Sr-modification may increase the porosity content through the formation of Sr-rich compounds during solidification.
R. Esmaeili, M.r. Dashtbayazi,
Volume 32, Issue 2 (Dec 2013)
Abstract
In the present work, molecular dynamics simulation method was used for determining Young's modulus, Shear modulus and Poisson’s ratio of Al-SiC nanocomposites, with different volume fractions of the reinforcements. For simulation, the open source package, LAMMPS, was used. After putting Aluminum and Silicon Carbide atoms in their initial positions, interatomic potentials between them were defined. EAM potential was used for Aluminum atoms, Morse potential was used for Al-C and Al-Si, and for C-C, Si-C, and Si-Si Tersoff potential was used. According to the elastic bounding principal, and the comparison between the simulations results and Voigt, Ruess and Halpin-Tsai micromechanical models showed that the results were close to the upper bound Voigt model.
M.r. Dashtbayazi, R. Esmaeili,
Volume 34, Issue 2 (Journal of Advanced Materials- Summer 2015)
Abstract
Based on molecular dynamics simulation results, a model was developed for determining elastic properties of aluminum nanocomposites reinforced with silicon carbide particles. Also, two models for prediction of density and price of nanocomposites were suggested. Then, optimal volume fraction of reinforcement was obtained by genetic algorithm method for the least density and price, and the highest elastic properties. Based on optimization results, the optimum volume fraction of reinforcement was obtained equal to 0.44. For this optimum volume fraction, optimum Young’s modulus, shear modulus, the price and the density of the nanocomposite were obtained 165.89 GPa, 111.37 GPa, 8.75 $/lb and 2.92 gr/cm3, respectively.
S. Nikbakht Katouli, A. Doostmohammadi, F. Esmaeili,
Volume 35, Issue 1 (Journal of Advanced Materials-Spring 2016)
Abstract
The aim of this study was to fabricate carbon nanotube (CNT) and bioactive glass nanoparticles (BG) (at levels of
5 and 10 wt%) incorporated electrospun chitosan (CS)/polyvinyl alcohol (PVA) nanofibers for potential neural tissue engineering applications.The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy (SEM) and mechanical testing, respectively. In vitro cell culture of embryonal carcinoma stem cells (P19) were seeded onto the electrospun scaffolds. The results showed that the incorporation of CNTs and BG nanoparticles did not appreciably affect the morphology of the CS/PVA nanofibers. The maximum tensile strength (7.9 MPa) was observed in the composite sample with 5 %wt bioactive glass nanoparticles. The results suggest that BG and CNT-incorporated CS/PVA nanofibrous scaffolds with small diameters, high porosity, and promoted mechanical properties can potentially provide many possibilities for applications in the fields of neural tissue engineering and regenerative medicine.