Search published articles


Showing 3 results for Gholami

A. Gholami and M. Mirzai,
Volume 22, Issue 1 (7-2003)
Abstract

Overhead transmission lines are influenced by different factors which are mostly electrical and mechanical. These factors can cause problems for lines, distortions in network and outage of line. In designing transmission lines mechanical properties are evaluated after selecting a suitable conductor and clearance with regard to electrical properties. In lines designing, an important mechanical parameter for estimating of phase distance is oscillations. Strong wind or ice fall from conductor surfaces or simultaneous presence of ice and wind may cause different oscillations. These oscillations are classified to aeoliane, galloping, and swing. Aeoliane is of high frequency (5-100Hz) and low amplitude (about a few centimeters), galloping is of low frequency (0.1 to 0.3Hz) and high amplitude (about of span sagging), also swing is of horizontal oscillation. In this paper, the mechanism of conductor galloping oscillation and its different types are described. Also these oscillations are simulated on the typical span by personal computer. Keywords: Galloping, Overhead transmission lines, Single conductors, Modeling
M. Khosravi , M. Mansouri, A. Gholami, Y. Yaghoubinezhad,
Volume 40, Issue 1 (Journal of Advanced Materials-Spring 2021)
Abstract

In this research, the effect of graphene oxide (GO) and reduced graphene oxide (RGO) nanosheets on the mechanical and microstructural properties of AISI 304 stainless steel welded joints produced by the flux-cored arc welding (FCAW) method was investigated. Light microscope, field emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), Raman spectroscopy, and tensile strength test were used to characterize the samples. GO was synthesized by modified Hummers’ method and reduced by hydrazine. Accordingly, the pastes of GO and RGO in different concentrations of 1, 3, and 10 mg/ml were applied in the groove. The results demonstrated that increasing the RGO concentration up to 10 mg/ml improves the tensile strength and hardness values of welded joints up to 23% and 43%, respectively. It seems that RGO nanosheets have a significant effect on the mechanical properties of the welded joints by pinning of dislocations.

E. Mohagheghpour, R. Gholamipour, M. Rajabi, M. Mojtahedzadeh Larijani,
Volume 40, Issue 3 (Journal of Advanced Materials-Fall 2021)
Abstract

In this study, the amorphous carbon thin films were deposited by ion beam sputtering deposition method on the glass and Ni–Cu alloy substrates. The structural evolution of amorphous carbon and its correlation with the kinetic energy of carbon atoms during the growth of thin film was investigated. The effect of substrate material, deposition temperature, and ion beam energy on the structural changes were examined. Raman spectroscopy indicated a structural transition from amorphous carbon to diamond-like amorphous carbon (DLC) due to an increase in deposition temperature up to 100°C and ion beam energy from 2 keV to 5 keV. The size of graphite crystallites with sp2 bonds (La) were smaller than 1 nm in the amorphous carbon layers deposited on Ni-Cu alloy. The results of residual stress calculation using X-ray diffractometer (XRD) analysis revealed a decreasing trend in the tensile residual stress values of the amorphous carbon thin films with increasing the ion beam energy.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb