Showing 2 results for K. Badv
K. Badv,
Volume 23, Issue 2 (1-2005)
Abstract
This study is an attempt to introduce scientific fundamentals and available methods for wellhead protection area (capture zone) delineation for drinking water wells in cities. The results of this study could obviate some demands of the national water and wastewater company in quality control of the drinking water resources by delineation and application of the wellhead protection areas. For this purpose, the available literaturer reviewed to extract, criteria and methods of wellhead protection delineation, Then, (1) fixed radius method, (2) simplified variable shape methods, and (3) flow-transport analytical methods implemented in the computer code WHPA are introduced. The applicability of these methods is shown by some sample calculations for Urmia drinking water wells. Samples of the calculated wellhead protection areas for 36 wells in Urmia City will be shown using three analytical modules in WHPA. The effects of the hydrogeologic parameters on the wellhead areas will be discussed. When reliable hydrogeologic parameters are available in the region where wells are located, the analytical methods and WHPA code produce accurate results for wellhead protection areas.
K. Badv,
Volume 24, Issue 1 (7-2005)
Abstract
Contaminant transport analysis was performed for four selected solid waste landfill designs using the computer code POLLUTE. The diffusion coefficients were determined for the natural soils (aquitard) and compacted soils from the Urumia landfill site, using the diffusion tests. These coefficients along with the geometrical, physical, and chemical parameters of the natural soil and engineered layers, as well as the dominant boundary conditions were used in the analysis of the four selected
designs for the landfill. These designs were evaluated for the contamination of the underlying aquifer in a specified period, using the drinking water standard for chloride ion. The comparisons showed that the fourth design which includes the engineered elements of a blanket type leachate collection layer and a compacted clayey liner underneath the landfill base, has more certainty in controlling the contaminant transport from the landfill base to the underlying aquifer. This type of landfill could be introduced as an optimum and semi-engineered design to be used for solid waste landfills in Iran.