Search published articles


Showing 2 results for Karimian

H. Khaleghi, M. Mirzaee and S. M. H. Karimian,
Volume 22, Issue 1 (7-2003)
Abstract

In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mach number near to one, where similar upwind methods normally fail. Some two dimensional/ axisymmetric test cases have been computed to validate the present method. These cases are: Hypersonic flow over a 15-degree compression ramp, two-dimensional supersonic flow over a flat plate and axisymmetric supersonic flow over a tangent ogive. The results are compared with the results of other numerical schemes, such as Beam and Warming scheme Keywords: Upwind, Navier stokes, Hypersonic
A. Karimian, Kalantar,
Volume 39, Issue 1 (Journal of Advanced Materials-Spring 2020)
Abstract

In this research, barium calcium hexaferrite (Ba1-xCaxFe12O19 , 0≤x£1) nanoparticles were synthesized through a sol-gel combustion method. The dried gel samples were then calcined at 950ºC for 4:30h. The phase and microstructural evolution of calcined samples were investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results revealed formation of calcium -barium hexaferrite phase with a small amount of hematite as a secondary phase.  The average particle size is between 60-100 nm and the particle morphology is hexagonal or plate like structure. Results of a vibrating sample magnetometer (VSM) showed that the sample with x=0.4, exhibited the lowest value of saturation magnetization in comparison with others. This could be due to structural heterogeneity and presence of higher amounts of non- magnetic phases (BaFe2O4 and Fe2O3) in this sample compared to others. The results of sensory testing in acetone gas showed that the barium-calcium hexaferrite sample with x=0.2 had the highest sensitivity (0.28) and shortest response (15s) at a concentration of 900 ppm and a temperature of 200 °C despite of the long recovery time.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb