Search published articles


Showing 11 results for Karimzadeh

T. Mousavi, M. H. Abbasi, F. Karimzadeh, and M. H. Enayati,
Volume 26, Issue 2 (1-2008)
Abstract


S.s. Sayyedain, H.r. Salimijazi, M.r. Toroghinejad, F. Karimzadeh.,
Volume 33, Issue 1 (Journal of Advanced Materials- Summer 2014)
Abstract

Due to their superior properties such as high specific strength, high creep resistance and high strength at elevated temperatures, aluminum composites reinforced with alumina nano particles are widely used for advanced purposes such as aerospace and auto industries. Lack of an appropriate welding process limits their applications. Transient liquid phase (TLP) bonding is one of the state-of-the-art joining processes. It is used for welding composites and advanced materials. Microstructure and mechanical properties of TLP bonding depend on the bonding time and temperature. In the current study, the effect of bonding time on the microstructure and bonding strength of the TLP diffusion bonded of Al2O3p/Al nanocomposite was investigated. A thin layer of copper deposited by electroplating was used as an interlayer. The bonding times of 20 and 40 min were not sufficient for completing the isothermal solidification, and the bonding strengths were not satisfactory. By increasing the bonding time to 60 min at constant bonding temperature of 580 ºC, the isothermal solidification was completed and the final joint microstructure consisted of soft α-Al phase with dispersed CuAl2 precipitated particles. Decreasing the amount of brittle eutectic structures in the joint seam by increasing the bonding time was the main reason for improvement of the joint shear strength. The maximum joint shear strength was achieved at 580 ºC for 60 min which was about 85% of the shear strength of the base material.
A. Ghotbi Varzaneh, P. Kameli, F. Karimzadeh, H. Salamati,
Volume 34, Issue 3 (Journal of Advanced Materials-fall 2015)
Abstract

In this investigation, Ni47Mn40Sn13 ferromagnetic shape memory alloy was prepared by mechanical alloying. The metal powders were ball milled in argon atmosphere for 20 hours. X-ray diffraction pattern confirmed formation of crystalline structure of Heusler alloy. As-milled powder samples were sealed in quartz tubes under high vacuum and subjected to heat treatments at 950°C for different time durations. Then, the effect of isothermal ageing on structural, magnetic and electrical properties of samples was investigated. Results of electrical resistance displayed a metal-like behavior around martensitic transformation. The results showed that 16 hours of annealing was the optimal time for producing this alloy which could be an appropriate candidate for magnetic refrigerant.


B. Hassani, F. Karimzadeh, M. Enayati, M. Borouni,
Volume 35, Issue 1 (Journal of Advanced Materials-Spring 2016)
Abstract

In this study, TIG welding was used to clad and repair the surface of cast AZ91C magnesium alloy. Then, friction stir processing and T6 heat treatment wrer applied on the welded region. Microhardness results showed an improvement in the mean hardness of welded zone and also FSPed zone. Increase in the mean microhardness of the welded zone after T6 heat treatment to the maximum value was also concluded. The results of wear test showed that the wear resistance of the welded area was improved. Further improvement in wear properties was obtained after friction stir processing and T6 heat treatment.


M. Rezvani, K. Raeissi, F.l. Karimzadeh,
Volume 35, Issue 2 (Journal of Advanced Materials-Summer 2016)
Abstract

This study has examined the properties of Crofer 22APU stainless steel produced by mechanical alloying for using as interconnect plates in solid oxide fuel cells.This alloy was produced by mixing the source powders and mechanical alloying for 40 hours. For creating a sample with high density, spark-plasma sintering was applied at 1100 °C and 50 Mpa stress for
10 minutes. To achieve the desired properties such as low electrical resistance and high oxidation resistance, a number of samples were coated by manganese-cobalt using electrodiposition technique at current density of 150 mA/cm 2 for 40 minutes. Then, considering the properties required for an interconnect plate of solid oxide fuel cell, oxidation resistance and electrical resistance of the coated and uncoated samples were investigated. Oxidation behavior of the coated and uncoated samples, after 100 hours oxidation in air at 800°C did not follow any rule and its curve was a sinus type. The electrical resistance of uncoated samples was in the range of 0.1-0.2 mOhm.cm2, but the electrical resistance of the coated samples after 100 h oxidation reached to a less ammount  than that of the corresponding uncoated ones. The alloy produced by mechanical alloying method, compared with commercial ones produced by casting methods, showed similar oxidation behavior after 100 h oxidation, but it had a surface electrical resistance far less than its commercial ones.


Mrs M. Akbari, Dr S. Sabooni, Dr M. H. Enayati, Dr F. Karimzadeh,
Volume 36, Issue 2 (Journal of Advanced Materials-Summer 2017)
Abstract

In the present study, FeAl/Al2O3 nanocomposite coating was produced on the carbon steel plate using mechanical alloying (MA) technique via a mechanochemical reaction. Stoichiometric ratios of Fe, Al and Fe2O3 as well as a substrate were mixed and milled up to 22h in a vibrating high energy mill with a 4 mm ball. Samples prepared after 18h of MA were subjected to annealing at 773 K for 1-3 h. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and microhardness measurements were carried out to study mechanochemical reaction and coating formation characterization. The results showed that mechanochemical reactions were started after 10h of MA, which finally caused the slight formation of FeAl/Al2O3 nanocomposite. Increasing the milling time to 18 hours led to the continuous increase of the coating thickness up to 80 μm, while the coating layer fractured and began to peel by further milling. The microhardness of the coating after 18h milling was 1050 vickers. Annealing of the 18h milled powders at 773K for 3h led to the complete formation and synthesis of the FeAl/Al2O3 nanocomposite. The results showed that the annealing treatment had considerable effects on the hardness increase up to 1200 vickers as well as adhesion strength of the composite coating.
 


Z. Khosroshahi, F. Karimzadeh, M. Kharaziha,
Volume 37, Issue 2 (Journal of Advanced Materials-Summer 2018)
Abstract

Due to electrical properties (high electron mobility) and electrochemical characteristics (high electron transport rate), graphene-based  materials have been widely applied for various scientific fields. However, due to their two-dimensional  structures, these materials have low active sites for reaction. Therefore, changing from two-dimensional sheets dimensional to the three-dimensional ones  could provide graphene-based materials with high specific surface and electron and mass transport particles. For these purpose, reduced graphene oxide (rGO) and polystyren (PS) aqueous solution were mixed with two different  weight ratios kinetic. In this study, the three-dimensional graphene (3DG) was synthesized with graphene oxide using sacrificial PS particles. For this purpose, rGO and the PS aqueous solution were mixed with two different weight ratios of 95:5 and 85:15. Then, the 3DG-PS scaffolds were synthesized by controlling the pH value in the range of 6-8. Subsequently, PS particles were removed by immersing the synthesized scaffolds in toluene. In this research, the effect of filtering through the member filter and centrifuge on the morphology of the  scaffolds was  investigated. The scaffolds were characterized with X-ray diffraction and scanning electron microscopy. The results showed the formation of 3DG with a uniform distribution of porosities by  using the  centrifuge procedure. Moreover, the sacrificial PS particles were completely removed when the rGO to PS weight ratio was 95:5. So, 3DG with the uniform distribution of microscopy porosity could be synthesized through the sacrificial mold method and the centrifuge procedure; graphene oxide was also reduced with the PS weight ratio of 95:5. Further, based on the electrochemical evaluation of  this optimized sample, as compared to the  rGO , it was found that the 3DG had better electrochemical properties than the rGO. Therefore, 3DG with  the optimized rGO to PS weight ratio of 95:5 could be an ideal substitute for rGO in electrochemical applications

M. Soltani Samani, A. Bahrami, F. Karimzadeh,
Volume 38, Issue 4 (Journal of Advanced Materials-Winter 2020)
Abstract

In this study, joining of Ni3Al intermetallic compounds using the transient liquid phase (TLP) process with Cu interlayer was investigated. The binding process was carried out in a vacuum furnace at a temperature of 1050 °C for different times of 30, 60, 90 and 120 minutes. The effect of time variation on microstructure and mechanical properties of the joint zone was investigated. The EDS analysis results of the joints proved formation of the athermally solidified zone (ASZ), isothermally solidified zone (ISZ) and diffusion affected zone (DAZ) at different times. After 90 minutes, brittle eutectic phases still exist in the joint line. However, by increasing the process time to 120 minutes, a copper-rich solid solution was formed in the joint line. Maximum hardness was attained in DAZ region and due to formation of more brittle compounds. By increasing the process time to 90 min, the hardness in the joint center-line increased. After 120 min, the hardness in the joint center-line decreased to about 224 HV. Maximum shear strength was achieved to be about 60 MPa at a process time of 30 minutes and due to formation of Ni-rich matrix at the joint. With increasing time to 90 min, the shear strength decreased to about 34 MPa. After 120 minutes and due to formation of copper-rich solid solution as well as disappearance of eutectic compounds, shear strength again increased to about 44 MPa. Investigation of fracture surfaces showed that until 90 minutes, fracture mode was mainly brittle whereas by increasing time to 120 minutes, a more ductile fracture occurred.

S. N. Hosseini, F. Karimzadeh, M. H. Enayati,
Volume 39, Issue 4 (Journal of Advanced Materials-Winter 2021)
Abstract

The bare and pre-oxidized AISI 430 pieces were screen printed by copper ferrite spinel coatings. Good bonding between the coating and the substrate was achieved by the reactive sintering process of the reduced coating. The energy dispersive X-ray spectroscopy (EDS) analysis revealed that the scale is a double layer consisting of a chromia-rich subscale and an outer Cu/Fe-rich spinel. The results showed that the spinel protection layer not only significantly decreased the area specific resistance (ASR), but also inhibited the subscale growth by acting as a barrier to the inward diffusion of oxygen. ASRs of 19.7 and 32.5 mΩ.cm2, much lower than that of the bare substrate (153.4 mΩ.cm2), at 800 °C after 400 h oxidation were achieved for the bare and pre-oxidized copper ferrite spinel coated samples, respectively. Excellent, stable ASR (20.5 mΩ.cm2) was obtained with copper ferrite coating after 600 h of exposure at 800 °C. The high electrical conductivity of CuFe2O4 and its doping by Mn, the growth reduction of Cr2O3 oxide scale and the good coating to substrate adherence are proposed to be responsible for substantial improvement in electrical conductivity.

R. Bagheri, F. Karimzadeh, A. Kermanpur , M. Kharaziha,
Volume 40, Issue 2 (Journal of Advanced Materials-Summer 2021)
Abstract

A new method has been presented for the synthesis of copper (Cu)/copper oxide (CuO)-nanoparticles (NPs), based on the process of corrosion and oxidation of Cu-NPs on the surface of the gold electrode by nitric acid. Cu-NPs were deposited on the surface using potentiometric method. The high concentration of Cu-NPs was estimated by Differential Pulse Voltammetry (DPV). The process of growth and distribution of CuO-NPs on the surface of Cu-NPs using structural analysis of Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) showed that nitrate was well absorbed and a sharp hydroxyl peak appeared and a phase of CuO NPs formed on the electrode surface. The surface morphology indicated that the average size reduced from about 150 nm to 50 nm in the presence of nitrate. This can be due to the oxidation of Cu nanoparticles on the surface and reduction of particle size compared to the absence of nitric acid. This simple and low-cost method can be used as a surface modification of antibacterial and active catalyst electrodes.

Z. Rezay Marand, A. Kermanpur, F. Karimzadeh,
Volume 40, Issue 3 (Journal of Advanced Materials-Fall 2021)
Abstract

Increased demand for clean energy sources, solar cell technology is expanding rapidly. One of the most critical challenges in constructing perovskite solar cells is the lack of an effective hole transport layer with stability and reasonable price. Inorganic p-type semiconductors such as nickel oxide are very cost-effective compared to organic ones. Features such as wide energy gap, high conductivity, stability and resistance to moisture, and solution-based manufacturing process, make the nanostructured inorganic hole transport layer a viable alternative to organic materials. The purpose of this project was to evaluate the characteristics and mechanism of nickel oxide as a hole transport material and fullerene as an interlayer in the structure of inverted nanostructured perovskite solar cells. These solar cells obtained a fill factor of about 71%, a current density of 21.5 mA/cm2, an open-circuit voltage of 1000 mV, and an efficiency of 15.2%.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb