Showing 7 results for Loghman
S. Shirinparvar, R.s. Razavi, F. Davar, M.r. Loghman-Estarki, S. Ghorbani,
Volume 35, Issue 4 (Journal of Advanced Materials-Winter 2017)
Abstract
In this research, the nanopowders of lanthanum and neodymium co-doped yttria were synthesized by sol-gel combustion method. Citric acid and glycine were used as the gel maker and fuel respectively. The effect of molar ratio of citric acid to glycine on the grain size and morphology was evaluated. The optimized products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), UV–visible (UV–Vis), thermal gravimetric-differential thermal analysis (TG/DTA), and Fourier transform infrared spectrometer (FTIR). The optimized products which are synthesized with a molar ratio citric acid to glycine 1.06:1.06 have an average grain size of 30-40nm with spherical morphology, and without agglomeration. Also, their band gap is 3.29eV.
F. Mohammadi Bodaghabadi, M. R. Loghman Estarki, M. Ramazani, A. Alhaji,
Volume 38, Issue 3 (Journal of Advanced Materials-Fall 2019)
Abstract
In this research, synthesis of lithium fluoride (LiF) nanoparticles by fluorolytic sol-gel method has been studied. Moreover, the effect of lithium ion to fluorine source molar ratio and calcination temperature on particle size and phase of LiF nanoparticles were investigated. Lithium acetate (C2H3LiO2), trifluoroacetic acid (TFA), ethylene glycol monobutyl ether and oleic acid were used as sources of Li+ and F- ions, solvent and growth inhibitor, respectively. Thermal and X-ray diffraction (XRD) analyses as well as field emission scanning electron microscopy (FESEM) were used to investigate thermal behavior of the primary gel and to determine the phase and morphology of samples, respectively. The results showed that the 2: 1 molar ratio of Li+/ TFA and the calcination temperature of 400 °C result in LiF nanoparticles with a mean particle size of 80-100 nm.
M. R. Loghman Estarki, H. Ghalibaf Tousi, E. Mohammad Sharifi, H. Sheikh, A. Alhaji,
Volume 38, Issue 4 (Journal of Advanced Materials-Winter 2020)
Abstract
The purpose of this study was to evaluate the effect of glycyrol (tri-dentate, GLY) and ethylenediamine (double- dentate clay, en) chelating agents on phase and morphology changes of spinel nanoparticles synthesized by sol-gel method. Characterization of samples was performed by X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray spectrometer (EDX). The results showed that both samples synthesized with GLY and en contain cubic spinel phase. The sample synthesized with ethylenediamine has a pyramidal morphology with particle size in the range of 20-25 nm whereas the specimen prepared with glycerol is spherical with particle size in the range of 20-25 nm. Finally, suggested mechanism for morphological changes of spniel nanoparticles was discussed.
A. Ghasemi, M. R. Loghman Estarki, S. Torkian, G. R. Gordani,
Volume 39, Issue 2 (Journal of Advanced Materials-Summer 2020)
Abstract
The purpose of this study was to evaluate phase changes and magnetic properties of neodymium doped Ni0.7Zn0.3NdxFe2-xO4 (x = 0, 0.01, 0.03, 0.05, 0.07, 0.10) nanoparticles synthesized by complexing sol-gel method. In this method, triethanolamine (TEA) acted as both a gelling agent and a chelating agent. Samples were characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDX). XRD patterns of all synthesized samples revealed the formation of a spinel ferrite phase. Magnetic evaluation of the specimens showed that the Nd0.01 doped sample with a quasi-spherical morphology and particle size of about 60 nm has the highest saturation magnetization of 50 emu/g and coercive force of 103 Oe.
A. Zamani, M. R. Loghman Estraki, S. R. Hosseini, M. Ramezani, A. Al-Haji,
Volume 39, Issue 3 (Journal of Advanced Materials-Fall 2020)
Abstract
The aim of the study was to investigate the effect of temperature, time, pH, capping agent concentration (mercaptoacetic acid), Zn to Se and Se to reducing agent (NaBH4) mole ratios on morphology, phase developments and size of zinc selenide nanoparticles prepared by hydrothermal method. Characterization of zinc selenide nanoparticles was performed by Field Emission Electron Microscopy (FESEM), Energy Dispersive X-ray Spectrometry (EDS), X-ray Diffraction (XRD), Induced Coupled Plasma Spectrometry (ICP), Fourier Transform Infrared spectroscopy (FTIR) and Simultaneous Thermal Analysis (STA). The results of EDS showed that the ratio of atomic percentage of Zn to Se in the optimized zinc selenide nanoparticles is 1: 1 and elements are evenly distributed in the nanoparticles. Based on the results of FTIR and STA thermal analyses, MAA as the stabilizing agent binds to and stabilizes zinc selenide nanoparticles. Finally, fine nanoparticles of zinc selenide with narrow size distribution, spherical shape and cubic crystal structure were obtained at the minimum temperature (130 °C) and processing time (15 hours) with the least amount of reducing and capping agents compared to previous researches.
H. R. Karimi, H. Mansouri, M. R. Loghman Estarki, M. Tavoosi , H. Jamali,
Volume 40, Issue 1 (Journal of Advanced Materials-Spring 2021)
Abstract
This study aimed to compare the phase changes and morphology of yttria-stabilized zirconium oxide powders (YSZ) synthesized by co-precipitation and molten salt methods. Ammonia precipitating agent was used for the synthesis of YSZ powder by co-precipitation method and a mixture of sodium carbonate and potassium carbonate salts was used as a molten salt in the molten salt method. Samples were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) analysis. The results showed that only the sample prepared with zirconium oxychloride and yttrium nitrate by co-precipitation method had a single phase of yttria-stabilized zirconium oxide with tetragonal crystal lattice and particle size distribution in the range of 30 to 55 nm. The powder synthesized by the molten salt method contained a mixture of zirconia with monoclinic crystal lattice and yttria stabilized zirconia with tetragonal crystal lattice and particle size of 200 nm.
R. Zarei, E. Mohammadsharifi, M. R. Loghman, M. Ramazani, Kh. Zamani,
Volume 41, Issue 1 (Journal of Advanced Materials-Spring 2022)
Abstract
The present research has examined the effect of adding Si3N4 on the mechanical and structural properties of NiCrAlY alloy. The structural and mechanical properties of the manufactured samples were characterized by SEM, XRD, micro-hardness evaluation and pin on disk wear test. Various concentrations of Si3N4 powder (1, 3, and 5 wt.%) were mixed with NiCrAlY powder using a mechanical ball mill. Next, the mixtures were sintered at 1100 °C using the spark plasma sintering (SPS) technique. The XRD patterns indicated that the samples were composed of two phases of solid solution γ-Ni(Cr) and intermetallic compounds β-NiAl. The results of micro-hardness measurements showed that adding 1% Si3N4 to NiCrAlY enhanced the hardness from 418 to 614 HV. However, with an increase in the Si3N4 content from 1 to 5 wt%, the hardness diminished from 614 to 543 HV, and by Adding Si3N4 to the NiCrAlY, its tribological properties were significantly improved.