Search published articles


Showing 4 results for M. R. Soltani

M. R. Soltani and A. R. Davari,
Volume 20, Issue 2 (4-2001)
Abstract

A wind tunnel investigation was performed to study the flow field over a 70° swept sharped edge delta wing model at high angles of attack. The experiments were conducted in the subsonic wind tunnel at the Department of Mechanical Engineering, Sharif University of Technology. Velocity profiles have been measured using a special pitot tube and hot wire anemometer at angles of attacks of 10 to 35 degrees and Reynolds numbers between 1.5 to 5´105 over half and a full model. From these studies the shape of the leading edge vortices as well as the turbulence intensity inside the vortices were obtained and analyzed. This study revealed a region of increased velocity highly tubulent flow at the vortex core. As a result, the lift will increase nonlinearly with angle of attack. Keywords: Leading edge vortex, Turbulence Intensity, Delta Wing, Vortex Bursting, Vortex core
M. R. Soltani, H. Fazeli, B. Farahanieh and A. R. Davari,
Volume 21, Issue 1 (7-2002)
Abstract

An extensive experimental investigation to understand the aerodynamic behavior of wrap around fin (WAF) missile configuration has been conducted. Various tests using at first a standard model (TTCP) in the trisonic wind tunnel of Imam Hossein University has been performed. The tunnel has attest section of 60×60 cm2 and can operate at Mach numbers of 0.4≤M∞≤2.2 and at attack angles of -4˚≤α≤10˚. Experimental longitudinal results are compared with those of NASA and an engineering code. The results for TTCP model are in good agreement. After gaining confidence on the TTCP results, a new model of WAF rocket was designed, built and tested. This paper compares the results of two models tested under the same conditions. Keywords: Wind tunnel, Wrap around fin, Missile, Balance WAF-TTCP
M. R. Heidari, M. R. Soltani, M. Taeibi-Rahni, and M. Farahani,
Volume 24, Issue 2 (1-2006)
Abstract

A series of supersonic wind tunnel tests on an ogive-cylinder body were performed to investigate the pressure distribution, the boundary layer profiles, and the flow visualization at various angles of attack. All tests were conducted in the trisonic wind tunnel of the Imam Hossein University. The theoretical shock angle at different model positions compared well with those we obtained via Schilerian results. The static surface pressure results show that the circumferential pressure at different nose sections vary significantly with angle of attack. However, minor changes in the circumferential pressure signatures along the cylindrical part of the body were observed. The total pressure measurements in the radial direction, perpendicular to the incoming flow, vary significantly both radially and longitudinally (along body length). The boundary layer thickness increases along the body. At the beginnig and at the midle part of the cylinderical portion of the body, the boundary layer thickness increases uniformly with increasing angle of attack. However, this situation differs near the end of the body. Our measurements indicated a turbulent boundary layer along the model, which is probably due to the high turbulence level in the tunnel test section.
M. R. Soltani, M. Seddighi, and A. Bakhshalipour,
Volume 26, Issue 1 (7-2007)
Abstract

The blades of wind turbines are the most important parts in producing power output. In this study, a section of a 660 KW wind turbine blade will be installed in Iran in near future was tested in a wind tunnel. In addition to steady tests, various unsteady tests including the effects of reduced frequency, mean angle of attack, and amplitudes were carried out. The preliminary results show strong effects of reduced frequency on the aerodynamic coefficients of the airfoil. Moreover, increasing the reduced frequency delays dynamic stall angle of attack but increases lift and drag coefficients compared to the static results. Further, the values of the aerodynamic coefficients in the upstroke motion (increasing angle of attack) are different from their corresponding values in the downstroke (decreasing angle of attack). These differences create a hysteresis loop where its width and shape are strong functions of reduced frequency, mean angle of attack, and amplitudes.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb