Search published articles


Showing 5 results for M. Vafaeian

M. Vafaeian,
Volume 5, Issue 1 (10-1987)
Abstract


M. Vafaeian,
Volume 8, Issue 1 (4-1990)
Abstract


M.e. Eslimi, M.m. Saadatpour, M. Vafaeian,
Volume 13, Issue 1 (7-1993)
Abstract


M. Vafaeian,
Volume 22, Issue 1 (7-2003)
Abstract

A finite element program based on elastic –plastic model of Mohr-Coulomb criterion was used to evaluate the bearing capacity coefficients of soil under shallow strip flexible footing . The results were compared with others’ analytical results and it was found that the present study could offer quite consistent and rather precise values for the bearing capacity coefficients . The effect of different parameters such as E , υ, φ ,ψ ,γ , type of mesh idealization ,type of elements ,type of load distribution at the footing base have been examined and some new results obtained and discussed. The main conclusion can be summarized as : that the values of bearing capacity coefficients for any particular amount of friction angle should not be expressed as a single number solely dependent on the friction angle ,but the accurate values must be considered as the values dependent on some other effective parameters , which have been mentioned above . Keywords : soil bearing capacity , finite element , Mohr-Coulomb , shallow footing
M. Vafaeian,
Volume 22, Issue 2 (1-2004)
Abstract

This paper presents the results of a recent study about the following aspects relevant to tunneling in soft grounds:e) The domain of deformations due to tunneling in soft ground can be specified within a boundary of a parabolic shape. This boundary is defined by a parabolic formula as a function of a central angle which depends on the soil type i.e., either cohesive or cohesionless. This parabolic shape can also be verified by a finite element computation.f) A finite element program has been applied to investingate the deformation characteristics around and above circular tunnels and to find the settlement ratio as a function of known variables such as, depth ratio, modulus of elasticity, and the thickness of soil layer beneath the tunnel. The finite element computations were carried out by assuming a given distribution of displacements around the tunnel perimeter, for which reason the method may be called “compulsory displacements”. It was found that although all the variables mentioned affect both the settlement ratio and the type of soil deformations, changing the values of modulus of elasticity affects only on the amount of deformation components, but not the settlement ratio.g) The results of finite element computations for the settlement ratio have been compared to other analytical curves and empirical data from some available case studies from which excellent agreements were found. also the contours of Equal deformation components from the finite element program and from the simple formulae proposed by the author were found to be quite similar and in acceptable agreement.h) Because the results obtained from the proposed formulae for the distribution of settlement at the ground surface are in excellent agreement with the relationships recently proposed by Loganathan & Poulos and the empirical data available, it is concluded that the simple analysis proposed here and the finite element computations based on the elasticity assumption can both be used to predict the deformation pattern around excavations in soft ground.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb