Showing 4 results for Mirzaei
B. Mirzaeian, M. Moallem, V. Tahani and Caro Lucas,
Volume 20, Issue 1 (7-2001)
Abstract
In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplied by Current-Source-Inverter (CSI). Step response of the system is considered and controller parameters are designed based on multi-objective optimization technique. Rise-time, maximum over-shoot, settling time and steady state error are considered as objective functions. The simulation results of the new method for induction motor speed control and optimization of two nonlinear mathematical functions are compared with the results obtained from other methods [4,14,15], which shows better performance.
S. Mirzaei, M. Saghaein - Nejad, V. Tahani and M. Moallem,
Volume 20, Issue 2 (4-2001)
Abstract
This paper introduces a novel passive suspension system for ground vehicles. This system is based on a flexible Electromagnetic Shock Absorber (EMSA). In the proposed system, efforts are made to a) select a high damping coefficient usable in a car b) determine Physical dimensions and geometry not much different from those of the mechanical shock absorbers and c) seletct EMSA weight and volume low enough for the core not to be saturated. A model is designed and developed followed by determining the dynamic equations for the model. The results from the simulation in a quarter car model are then compared with those from passive and active suspension systems.
Keywords: Active Suspension Systems, Electromagnetic damper, Finite Element method
S. Mirzaei , A. Jazayeri Gharehbagh,
Volume 31, Issue 1 (Jun 2012)
Abstract
The soft magnetic nanocrystalline Fe73.5Si13.5B9Cu1Nb3 alloy (FINEMET®) is produced by heat treatment of amorphous precursor. Determining kinetic parameters of amorphous structure transformation to nanocrystalline allows the control of microstructure (e.g. size and volume fraction of nanocrystalline grains) in order to achieve desired soft magnetic properties by optimizing the heat treatment conditions. In this research, the nanocrystallization kinetics of amorphous FINEMET alloy were studied using isoconversional and isokinetic methods under non-isothermal conditions of various heating rates ranging from 5 to 20˚C/min. The changes in the microstructure and magnetic properties of amorphous ribbon during nanocrystallization process were studied using X-ray diffractometry and hysteresisgraph, respectively.
M. Alizadeh, M. Mirzaei,
Volume 34, Issue 1 (Journal of Advanced Materials-Spring 2015)
Abstract
In this study, at first Al-Al2O3 composite powders having different volume fractions of Al2O3 (0, 10, 20, 30 and 40 vol.%) were produced by low energy mechanical alloying, which were used as foam materials. Then, composite foams with 50, 60, and 70 percent of porosity were produced by space-holder technique. Spherical carbamide particles (1-1.4 mm) were used to achieve spherical porosities. In order to investigate the compressive behavior of foams, the compression test with strain rate of 10-3 S-1 was performed on the foam samples. The results showed that the compressive properties depended on the volume fraction of Al2O3 and porosity fraction. Generally, by decreasing the porosity fraction, the compressive properties were improved. The composite foams containing 10 vol.% Al2O3 showed superior compressive properties in comparison to other foams studied in this work.