S. Nikbakht Katouli, A. Doostmohammadi, F. Esmaeili,
Volume 35, Issue 1 (Journal of Advanced Materials-Spring 2016)
Abstract
The aim of this study was to fabricate carbon nanotube (CNT) and bioactive glass nanoparticles (BG) (at levels of
5 and 10 wt%) incorporated electrospun chitosan (CS)/polyvinyl alcohol (PVA) nanofibers for potential neural tissue engineering applications.The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy (SEM) and mechanical testing, respectively. In vitro cell culture of embryonal carcinoma stem cells (P19) were seeded onto the electrospun scaffolds. The results showed that the incorporation of CNTs and BG nanoparticles did not appreciably affect the morphology of the CS/PVA nanofibers. The maximum tensile strength (7.9 MPa) was observed in the composite sample with 5 %wt bioactive glass nanoparticles. The results suggest that BG and CNT-incorporated CS/PVA nanofibrous scaffolds with small diameters, high porosity, and promoted mechanical properties can potentially provide many possibilities for applications in the fields of neural tissue engineering and regenerative medicine.