M. Tavoosi, S. Rizaneh, G. H. Borhani,
Volume 36, Issue 1 (Journal of Advanced Materials-Spring 2017)
Abstract
Investigating the effect of Al2O3-TiB2/Fe complex reinforcement (CCMR) on the mechanical properties of aluminum composites was the goal of this study. For this purpose, the Al2O3-TiB2/Fe reinforcement powders were synthesized during milling and subsequent annealing. Different volume percentages of the produced reinforcement powders (1.25, 2.5 and 5 vol.%) were added to aluminum matrix, milled for 10 h and then hot extruded. The structural phasic and mechanical investigations of the specimens were carried out using X-ray diffraction, scanning electron microscopy and tensile test. The results showed that the metallic component (Fe rich phase) in this new type of reinforcement stuck the ceramic parts (Al2O3-TiB2) to aluminium matrix, and has an importance role in the flexibility of the product. The best volume percentage of CCMR in aluminium matrix was about 2.5%. This nanocomposite had a combination of strength and ductility of about 500 MPa and 6%, respectively.