Search published articles


Showing 2 results for Sadeghzade

Z. Ansari, M. Alizadeh, A. Sadeghzadeh Attar,
Volume 33, Issue 2 (Journal of Advanced Materials-fall 2015)
Abstract

In this study, mixed metal oxides Al2O3/MgO/TiO2 coatings with Al/Mg/Ti ratios of 5:1:3 and 2.5:3:4 were coated on AA1100 aluminum by sol-gel method. The surface morphology, phase analysis and the corrosion behavior of the Al2O3/MgO/TiO2 coatings were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and electrochemical impedance spectroscopy measurements (EIS) in 3.5 wt.% NaCl solution. The thermal behaviors, the bonds configuration, and functional groups of the coated samples were studied by thermo-gravimetric and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FTIR), respectively. The results demonstrated that heat treatment at 450 °C caused an increase in porosity and coating cracking, finally leading to the decrease of corrosion resistance. The best corrosion resistance was achieved for the sample with Al/Mg/Ti molar ratio of 5:1:3 without any heat treatment. The structure of this sample was amorphous, and heat treatment resulted in crystallization and decrease of the corrosion resistance.
S. Sadeghzade, R. Emadi, Sh. Labbaf,
Volume 37, Issue 1 (Journal of Advanced Materials-Spring 2018)
Abstract

In the recent three decades, Ca-Si-based ceramics have received great attention as an appropriate candidate for tissue engineering applications due to their remarkable bioactivity, biocompatibility, and good bone formation ability. Hardystonite is currently recognized as a bioactive and biocompatible bio-ceramic material for a range of medical applications. In the present study, for the first time, hardystonite powder and 3D hardystonite scaffold with interconnected porosity were produced using mechanical alloying synthesis and the space holder method, respectively. It was found that pure nano-crystalline hardystonite powder formation occurred following 10 h of milling and subsequent sintering at 800  C° for 3 h. The measured crystallite size of particles and the hardystonite scaffold was found to be 28 ± 2 and 79 ± 1 nm, respectively. The results also showed that nanostructured hardystonite scaffolds with the compressive strength and modulus of 0.35 ± 0.02 and 10.49 ± 0.21 MPa, the porosity of 81 ± 1% , and pores size range of 200–500 μm were successfully synthesized after sintering at 1250 °C for 3 h. During the sintering process, NaCl (80wt%, 300-420 µm), as the spacer agent, gradually evaporated from the system,producing porosity in the scaffold. Simulated body fluid (SBF) was used to evaluate the apatite formation ability of the scaffolds. The results showed that the formation of an apatite layer on the scaffold surface could be considered as a bioactivity criterion.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb