Showing 3 results for Salimijazi
H. R. Salimijazi, T. Behzad, J. Mostaghimi,
Volume 31, Issue 1 (Jun 2012)
Abstract
Open pore metallic foams can be used for high temperature, high performance heat exchanger due to their high gas permeability and heat conductivity provided that skins properly attach to the foam’s struts on the surface. In the current study, a novel process was successfully developed to fill pores on the surface of the foam sheet in order to deposit skin on the foam specimens by thermal spraying. Nickel based superalloy (Inconel 625) skins were deposited on each side of a sheet of nickel metal foam with different pore densities of 10 and 20 pores per inch by high velocity oxy-fuel (HVOF), atmospheric plasma spraying (APS), and twin wire arc spraying to form a sandwich structure. The sandwich structure can be used in high temperature heat exchanger applications. The penetration of the coating materials into the foam struts can be controlled through the filling process before spraying. The microstructure of the skins and the adhesion at the interface between the nickel foam’s struts and skins were characterized. Results showed dense skins with good adhesion to the surfaces of the foam. The foam’s struts were imbedded into the coatings deposited by HVOF more deeply than the coatings deposited by APS and wire arc spraying. Skins deposited by HVOF and wire arc spraying showed higher bending strength than the skin deposited by APS due to lower porosity and oxide content in the coating.
S.s. Sayyedain, H.r. Salimijazi, M.r. Toroghinejad, F. Karimzadeh.,
Volume 33, Issue 1 (Journal of Advanced Materials- Summer 2014)
Abstract
Due to their superior properties such as high specific strength, high creep resistance and high strength at elevated temperatures, aluminum composites reinforced with alumina nano particles are widely used for advanced purposes such as aerospace and auto industries. Lack of an appropriate welding process limits their applications. Transient liquid phase (TLP) bonding is one of the state-of-the-art joining processes. It is used for welding composites and advanced materials. Microstructure and mechanical properties of TLP bonding depend on the bonding time and temperature. In the current study, the effect of bonding time on the microstructure and bonding strength of the TLP diffusion bonded of Al2O3p/Al nanocomposite was investigated. A thin layer of copper deposited by electroplating was used as an interlayer. The bonding times of 20 and 40 min were not sufficient for completing the isothermal solidification, and the bonding strengths were not satisfactory. By increasing the bonding time to 60 min at constant bonding temperature of 580 ºC, the isothermal solidification was completed and the final joint microstructure consisted of soft α-Al phase with dispersed CuAl2 precipitated particles. Decreasing the amount of brittle eutectic structures in the joint seam by increasing the bonding time was the main reason for improvement of the joint shear strength. The maximum joint shear strength was achieved at 580 ºC for 60 min which was about 85% of the shear strength of the base material.
A. R. Parvanian, H. R. Salimijazi, M. H. Fathi,
Volume 38, Issue 4 (Journal of Advanced Materials-Winter 2020)
Abstract
The concentrated solar power (CSP) is one of the renewable energy sources in which solar irradiation heat energy will be used in a steam turbine to generate electrical grid. Solar radiation is absorbed by a solar receiver reactor on the surface of a porous solar absorber. In this survey, synthesis and mechanical/thermal characterization of micro-porous silicon carbide (SiC) absorber to be used in solar reactor is carried out. SiC foams were synthesized and categorized based on three different pore sizes i.e. 5, 12 and 75 ppi. Mechanical behavior and thermal shock resistance of porous foams in the working temperature range for absorber (25-1200 °C) were evaluated. Results revealed that the specific compressive strength (σc/ρ) of foams increase exponentially by a decrement in the porosity percentage and the average pore size. Moreover, for foams with smaller pore size, a considerable decrease in mechanical strength due to thermal shock was observed. This could be due to increase in the number of struts per unit volume i.e. more weak struts to withstand the mechanical loading. So, porous foams with coarser pore sizes were distinguished to be more capable of tolerating thermal shock while serving as solar absorbers.