Showing 7 results for akbari
B. Bakhit, A. Akbari,
Volume 31, Issue 2 (Dec 2012)
Abstract
Composite and nanocomposite Ni-Co/SiC coatings were synthesized by electro-codeposition of micro and nano-sized SiC particles with average diameter of 10m and 20nm using horizontal electrodes. Surface morphology, chemical composition, phase composition, hardness and corrosion resistance of the deposited coatings were studied using SEM observations and EDX, XRD, microhardness and polarization measurements as a function of the electrodeposition current density. The results indicated that the nanocomposite coatings exhibit higher hardness and corrosion resistance compared with the composite coatings containing micro-sized SiC particles despite their lower percentage of the SiC content. The maximum hardness values of 615HV and 490HV were obtained for nanocomposite and composite coatings deposited at current density of 3A/dm2. The observed properties were discussed based on the structural details.
S. Safi, Dr G. H. Akbari,
Volume 36, Issue 1 (Journal of Advanced Materials-Spring 2017)
Abstract
Strengthening of copper matrix by dispersion of metallic oxides particles as an efficient way to increase strength without losing thermal and electrical conductivities has been recognized for many years. Such a composite can withstand high temperatures and keep its properties. Such copper alloys have many applications especially in high temperature including resistance welding electrodes, electrical motors and switches. In the present work, at first, the Cu-1%Al solid solution was prepared by the mechanical alloying process via 48 hours of milling. Subsequently, 0.66 gr of copper oxide was added to Cu-1%Al solid solution and mechanically milled for different milling times of 0,16, 32, 48 hours. The milled powder mixtures were investigated by X-Ray Diffraction and scanning electron microscopy techniques. The lattice parameter of Cu increased at first, but then decreased at longer milling times. The internal strain increased and the average Cu crystal size decreased during milling process.The particle size decreased during the whole process. With increasing annealing temprature from 450°C to 750°C, the microhardness values of samples decreased at the beginning but then increased. From these results, it can be concluded that nanosize aluminaparticles are formed in the copper matrix.
Kh. Farjam Hajiagha, A. R. Akbari, R. Mohammadzadeh,
Volume 36, Issue 2 (Journal of Advanced Materials-Summer 2017)
Abstract
In this study, the kinetics of austenite layer growth on the surface of Fe-23Cr-2.4Mo ferritic stainless steel during solution nitriding and the effects of nitrogen adding on microstructure and hardness of the steel have been investigated. Steel plates of 2 mm thick were solution-nitrided at 1200˚C under nitrogen pressure of 0.25 MPa for 2, 3, 6, 9, 12 hours. Microstructure, the thickness of austenite layer and the hardnes of the nitrided samples, were investigated by using optical microscope, X-ray Diffraction (XRD) and microhardness measurements. The results showed that during solution nitriding, nitrogen diffuses through the lattice and grain boundaries and transforms ferrite to austenite phase, with average nitrogen diffusion coefficient of 6.54×10-5 mm2s-1. The thickness of the austenite layer formed on the samples surfaces increased proportional to the square root of the nitriding time, so that after 12 hours niriding, the whole thickness of the ferritic sample with hardness of 262 HV0.1 transformed to austenite with hardness of 420 HV0.1.
Mrs M. Akbari, Dr S. Sabooni, Dr M. H. Enayati, Dr F. Karimzadeh,
Volume 36, Issue 2 (Journal of Advanced Materials-Summer 2017)
Abstract
In the present study, FeAl/Al2O3 nanocomposite coating was produced on the carbon steel plate using mechanical alloying (MA) technique via a mechanochemical reaction. Stoichiometric ratios of Fe, Al and Fe2O3 as well as a substrate were mixed and milled up to 22h in a vibrating high energy mill with a 4 mm ball. Samples prepared after 18h of MA were subjected to annealing at 773 K for 1-3 h. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and microhardness measurements were carried out to study mechanochemical reaction and coating formation characterization. The results showed that mechanochemical reactions were started after 10h of MA, which finally caused the slight formation of FeAl/Al2O3 nanocomposite. Increasing the milling time to 18 hours led to the continuous increase of the coating thickness up to 80 μm, while the coating layer fractured and began to peel by further milling. The microhardness of the coating after 18h milling was 1050 vickers. Annealing of the 18h milled powders at 773K for 3h led to the complete formation and synthesis of the FeAl/Al2O3 nanocomposite. The results showed that the annealing treatment had considerable effects on the hardness increase up to 1200 vickers as well as adhesion strength of the composite coating.
Gh. Akbari, M. H. Enayati, H. Minouei,
Volume 37, Issue 1 (Journal of Advanced Materials-Spring 2018)
Abstract
In the present study, the mechanical alloying process was used to produce the Ni-Nb-Si amorphous alloy. X-ray diffraction (XRD)analysis and high-resolution transmission electron microscopy (HRTEM) were used to approve the amorphous phase formation after 12 hours of mechanical alloying. The results obtained from the SEM morphological images of powder particles during mechanical alloying showed that increasing the milling time caused the reduction of the powder particles size and uniformity in the shape of the particles. Enhancing the embrittlement and fracturing rate caused brittleness and the increase in the failure rate; these were followed by a decrease in the powder particle size to 1-5μm. Cold welding and flattening of the pure elemental powders after mechanical alloying for 2 hours formed a lamellar structure of the alternative layers of different elements lying over each other. SEM image of cross-section of powder particles showed that by increasing the milling time, the interlamellar spacing was decreased, the elements were distributed more uniformly, and finally, a uniform structure of theamorphous phase was completed.
M. Akbari Taemeh, B. Akbari, J. Nourmohammadi,
Volume 37, Issue 3 (Journal of Advanced Materials-Fall 2018)
Abstract
In gradient scaffolds, changes in porosity, pore size or chemical composition occur gradually. Recently, different methods have been applied to create gradient in the scaffolds, but they have some disadvantages such as high cost and control. The main purpose of this research was to fabricate porous gradient scaffolds by a novel, functional, simple, and low-cost method. Two homogenous scaffolds (Homog 1 and Homog 2) and two gradient scaffolds (Grad 1 and Grad 2) were fabricated and compared. Polycaprolactone scaffolds with the pore size gradient along the radial direction were fabricated by combining layer-by-layer assembly and porogen leaching techniques. Paraffin micro particles were used as porogen in two size ranges: 250 to 420 µm and 420 to 600 µm. The average pore size of Homog 1 and Homog 2 was 278.48 ± 11.23 µm and 417.79 ± 14.62, which were suitable for bone tissue engineering. The porosity of the samples was: Homog 1: 77.5 ± 1.25 %, Homog 2: 61.3 ± 3.5 %, Grad 1: 74 ± 0.5 % and Grad 2: 79.8 ± 4 %. It should be stated that the required porosity for cell survival and growth was above 70 %. Compressive strength at 80% strain and compressive modulus for Homog 1, Homog 2, Grad 1 and Grad 2 were 0.16 ± 0.16 MPa and 0.25 ± 0.11 MPa, 0.26 ± 0.20 MPa and 0.53 ± 0.34 MPa, 0.19 ± 0.34 MPa and 0.33 ± 0.43 MPa, 0.12 ± 0.28 MPa and 0.16 ± 0.51 MPa, respectively. The results showed that pore size gradient had a negligible effect on the mechanical properties of the scaffolds and using polycaprolactone (PCL) as the only material of scaffold was not appropriate. The structure of gradient scaffolds showed the radial pore size gradient with a good adhesion between layers without any detectable interface; the result of the compression test also confirmed it.
S. Arjmand, G. H. Akbari, G. R. Khayati,
Volume 39, Issue 4 (Journal of Advanced Materials-Winter 2021)
Abstract
The purpose of the present work is to investigate the influence of the number of weld-passes on microstructure, hardness and residual stresses of composite coatings composed of Ti-Al-Si intermetallic compounds. In this regard, surface coating of pure Ti was carried out using one and two passes of tungsten inert gas (TIG) welding with an Al filler alloy (grade 4043). Phase and structural evaluations of the coatings were investigated by X-ray diffraction, optical and scanning electron microscopies. microhardness and residual stress values of the coatings were measured using ASTM E384-HV device and the Sin2ψ method, respectively. The results showed that as the number of welding passes increased or the dilution ratio decreased, the volume fraction of Ti5Si3-Al3Ti intermetallic phases within the fusion zone increased and the volume fraction of martensite phase in the heat affected zone decreased. As a result, the average hardness value of the coating increased to be about 130 % compared to that of the pure Ti substrate. The tensile residual stresses at the center line of fusion zone were 165 ± 30 and 210 ± 35 MPa for the coatings prepared in one and two welding passes, respectively.