Search published articles


Showing 590 results for Subject: General

A. Mosleh, H. Shahverdi, R. Poursalehi,
Volume 35, Issue 2 (9-2016)
Abstract

In this study, electrical wire explosion has been used to produce aluminum carbon nanotube (Al-CNT) nanocomposite particles in acetone medium. In order to synthesize Al-CNT nanocomposites, initially, CNTs were ultrasonically dispersed. Then, aluminum wire was exploded in this medium. Synthesized samples were characterized by Fourier Transform Infrared (FTIR) spectroscopy and Transmission Electron Microscopy (TEM) methods. The results exhibited formation of spherical nanoparticles in the medium. The average diameter of nanoparticles was 4 nm. Moreover, attained nanoparticles remained stable in acetone. Results revealed a good interaction between aluminum nanoparticles and CNTs in this medium. It is concluded that acetone is a suitable medium for synthesizing Al-CNT nanocomposite as appropriate dispersion of Al-CNT nanoparticles can be achieved in this medium.


F. Nazari, M. Hakimi, H. Mokhtari, A.s. Esmaeily,
Volume 35, Issue 2 (9-2016)
Abstract

In this paper, milling was investigated as a method for production of Mn-Ga binary alloys and the effect of milling process on phase formation of Mn:Ga samples with 2:1 and 3:1 ratio within 1, 2 and 5 hour milling times was studied. For Mn:Ga samples, according to the results, Mn1.86Ga compound with tetragonal structure and I4/mmm space group was a stable phase. Also, some amounts of  Mn3Ga compound with orthorhombic structure and Cmca space group was observed in the Mn:Ga solution. The effect of Ge addition, with the purpose of  replacing Ge with Ga was also studied in Mn:Ga:Ge (3:0.5:0.5) sample. Although improved magnetic properties is expected with the addition of Ge, but increasing the coercivity was occurred, and saturation magnetization did not change significantly in the studied sample. Ge addition caused elimination of the possibility of formation of asymmetric orthorhombic Mn3Ga phase. In return, two new structures of Mn11Ge8 and MnGaGe were appeared. This phase change was confirmed by studying magnetic behaviour of samples. This behavior can be caused by unbalanced electrostatic forces resulting from Mn-Mn exchange interaction in Mn3Ga orthorhombic structure and substitution of some Ge atoms with Ga.


S. Ahmadi, H. R. Shahverdi,
Volume 35, Issue 2 (9-2016)
Abstract

In this research, Glass Form Ability (GFA) has been investigated in the new class of Fe-based amorphous
alloys. Indeed, the main purpose is to evaluate the effects of alloying with niobium on glass form ability of Fe55-xCr18Mo7B16C4Nbx (X=0, 3, 4, 5) alloys. Vacuum induction melting (VIM) was utilized for production of primary
ingots and melt spinning process was used for production of thin ribbons required for kinetic and structural investigations. Kinetic analysis was done using
the data obtained from Differential Scanning Calorimetry (DSC) tests. Results showed that GFA and viscosity were enhanced by Nb alloying. It was also determined that devitrification transformation was accomplished in alloys by nucleation and growth mechanisms.


M. Sarvari, M. Divandari,
Volume 35, Issue 2 (9-2016)
Abstract

In this study, centrifugal casting process was used for producing Al/Mg bimetal. Molten Mg was poured at 700 oC, with 1.5 and 3 melt-to-solid volume ratio (Vm/Vs) into the 450 oC preheated solid Al rotating at 800, 1200, 1600 and 2000 rpm. Castings were kept inside the centrifuged casting machine and cooled down to 150 oC. Investigating the effect of melt-to-solid volume ratio showed that increasing volume ratio from 1.5 to 3 results in diminishing metallurgical bonding in Al/Mg interface, because the force of contraction overcomes the resultant force acted on the interface. The results of study by scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) showed that bimetal compounds of Al3Mg2, Al12Mg17 and δ+Al12Mg17 eutectic structure (δ is the solid solution of Mg in Al) are formed in the interface. Atomic force microscopy (AFM) image of Al surface showed that the surface was rough in atomic dimentions, which can result in the formation of gas pores in the interface.


M. Rezvani, K. Raeissi, F.l. Karimzadeh,
Volume 35, Issue 2 (9-2016)
Abstract

This study has examined the properties of Crofer 22APU stainless steel produced by mechanical alloying for using as interconnect plates in solid oxide fuel cells.This alloy was produced by mixing the source powders and mechanical alloying for 40 hours. For creating a sample with high density, spark-plasma sintering was applied at 1100 °C and 50 Mpa stress for
10 minutes. To achieve the desired properties such as low electrical resistance and high oxidation resistance, a number of samples were coated by manganese-cobalt using electrodiposition technique at current density of 150 mA/cm 2 for 40 minutes. Then, considering the properties required for an interconnect plate of solid oxide fuel cell, oxidation resistance and electrical resistance of the coated and uncoated samples were investigated. Oxidation behavior of the coated and uncoated samples, after 100 hours oxidation in air at 800°C did not follow any rule and its curve was a sinus type. The electrical resistance of uncoated samples was in the range of 0.1-0.2 mOhm.cm2, but the electrical resistance of the coated samples after 100 h oxidation reached to a less ammount  than that of the corresponding uncoated ones. The alloy produced by mechanical alloying method, compared with commercial ones produced by casting methods, showed similar oxidation behavior after 100 h oxidation, but it had a surface electrical resistance far less than its commercial ones.


S. Tavassoli, M. Abbasi, R. Tahavvori,
Volume 35, Issue 2 (9-2016)
Abstract

The purpose of this article is to study the formation of intermetallic compounds (IMCs) at the interface of Al/Cu bimetal produced by compound casting of molten Al in solid copper tubes. The mechanism of the intermetallic compounds formations at the interface, the effects of molten aluminum pouring temperature and solid copper tubes preheating tempreture, were investigated on the IMCs type and thickness and Al/Cu interface microstructures were characterized by optical microscope (OM) and electron probe micro-analyzer (EPMA). Results show that the interface consists of three main layers, where Layer (I) is α-Al/Al2Cu eutectic structure, layer (II) is intermetal of Al2Cu and layer (III) constituites several intermetallic compounds such as AlCu, Al3Cu4, Al2Cu3 and Al4Cu9. Considering the components of hypereutectic melt at the interface, initially layer (II) was formed by θ phase nucleation and growth mechanism, then layer (I) was formed by Al and Cu dissolving and solidification. Finally layer (III) was formed by solid-state phase diffusion. Raising molten Al temperature and preheating solid Cu leads to increase of the intermetallic compounds thickness at interface which consequently increases the specific electrical resistance and decreases the Al/Cu bond strength. From experimental results it seems that the bond strength is affected by the thicknesses of layer II and III.


M. Rezazadeh, M.r. Saeri, F. Tirgir Malkhlifeh, A. Doostmohammdi,
Volume 35, Issue 2 (9-2016)
Abstract

The aim of the present study is to study the effects of adding  diopside (CaMgSi2O6) as well as silica sulfuric acid nanoparticles to ceramic part of glass ionomer cement (GIC) in order to improve its mechanical properties. To do this, firstly, diopside (DIO) nanoparticles with chemical formula of CaMgSi2O6 were synthesized using sol-gel process and then, the structural and morphological properties of synthesized diopside nanoparticles were investigated. The results of scanning electron microscopy (SEM) and particle size analyzing (PSA) confirmed that synthesized diopside are nanoparticles and agglomerated. Besides, the result of X-ray diffraction (XRD) analyses approved the purity of diopside nanoparticles compounds. Silica sulfuric acid (SSA) nanoparticles are also prepared by chemical modification of silica nanoparticles by means of chlorosulfonic acid. Fourier transform infrared spectroscopy (FTIR) technique was used to find about the presence of the (SO3H) groups on the surface of silica sulfuric acid nanoparticles. Furthermore, various amounts (0.1, 3 and 5 wt.%) of diopside and silica sulfuric acid nanoparticles were added to the ceramic part of GIC (Fuji II GIC commercial type) to produce glass ionomer cement nanocomposites. The mechanical properties of the produced nanocomposites were measured using the compressive strength, three-point flexural strength and diametral tensile strength methods. Fourier transform infrared spectroscopy technique confirmed the presence of the (SO3H) groups on the surface of silica nanoparticles. The compressive strength, three-point flexural strength and diametral tensile strength were 42.5, 15.4 and 6 MPa, respectively, without addition. Although adding 1% silica solfonic acid improved nanocomposite mchanical properties by almost 122%, but maximum increase in nanocomposite mechanical properties was observed in the nanocomposites with 3% diposid, in which 160% increase was seen in the mechanical properties.


M. Bahrami, G.h. Borhani, S.r. Bakhshi, A. Ghasemi,
Volume 35, Issue 3 (12-2016)
Abstract

Organic–inorganic hybrid coatings were prepared by sol–gel method and deposited on aluminum alloy 6061. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were used for structural study of the hybrid coatings. Adhesive strength of sol–gel coatings to the substrate was evaluated quantitatively and qualitatively. Corrosion behavior of the samples was studied by cyclic potentiodynamic and linear polarization tests. Results showed that adhesion strength of the coatings to the substrates was increased with increasing tetrapropoxide of zirconium (TPOZ) and cerium content. Corrosion tests showed that corrosion current density of coated samples were decreased three to seven orders of magnitude in comparison with uncoated aluminum alloy 6061. Decreasing in corrosion current density and increasing in polarization resistance was observed by increasing zirconia and cerium content. Unlike the uncoated aluminum alloy 6061, the crack-free coatings did not show pitting tendency. 


M. Baradaran, S.s. Shafiei, F. Moztarzadeh, S.z. Mortazavi,
Volume 35, Issue 3 (12-2016)
Abstract

In recent years the use of nanomaterials in bone tissue engineering scaffold has been considered due to its imitating the structure of natural bone tissue which contains a nanocomposite structure mixed with a three-dimensional matrix. In the meantime, Polycaprol actone has been used as a bio-polymer in bone tissue engineering applications as a scaffold. The aim of this study is to develop porous scaffolds made of polycaprol actone/layered double hydroxide biocomposite, with appropriate mechanical, bioactive and biological properties, for bone tissue engineering application. The nanocomposite scaffolds were fabricated by the particulate leaching method and freeze-drying method. In this study, MG63 cells (osteosarcoma) was investigated for cellular study. Energy dispersive X-ray analysis confirmed uniform distribution of ceramic phase in polycaprol actone matrix. The results of mechanical tests showed the increase in young’s modulus after addition of ceramic phase. The microscopic investigations demonstrated that the pores generated after addition of ceramic phase and the average size of pores was as large as 100-600μm. Also by the addition of LDH, the hydrophilicity of PCL increased but the rate of hydroxyapatite formation was delayed due to presence of magnesium ions. The cell culture experiments confirmed the attachment and proliferation of cells on the scaffolds. The results showed that the fabricated scaffolds have the potential to be used in cancellous bone tissue engineering.


M. Rezazadeh, R. Emadi, A. Saatchi, A. Ghasemi, M. Rezaeinia,
Volume 35, Issue 3 (12-2016)
Abstract

Simultaneous application of mechanical pressure and electrical charge on powder samples in spark plasma sintering process, has resulted in a sample with a density close to the theory. In the present study, a thermal-electrical-mechanical coupled finite element model of spark plasma sintering system using multi-objective optimization algorithm is proposed to optimize the mold variable. The simulation performed for Si3N4-SiO2 (1:1 mol) specimen has good agreement with the experimental results. Multi-objective genetic algorithms was used for optimization of mold design in order to maximize the temperature of sample core and minimize the mises stress in the mold. The results show that the optimized dimensions cause 8% increase in sample temperature and about 18% decrease in temperature difference between mold surface and sample core. This leads to better uniformity in the porosity distribution of final sample.


R. Sobhani, M. Hakimi, M. Khajeh Aminian, P. Kameli,
Volume 35, Issue 3 (12-2016)
Abstract

In this paper, the phase formation process of Mn2.5Ge samples, prepared by mechanical alloying of Mn and Ge metal powders and annealing, has been studied. Results showed that in the milled samples the stable phase is Mn11Ge8 compound with orthorhombic structure and Pnam space group. The value of saturation magnetization increases by increasing milling time from 0.2 up to 1.95 (Am2Kg-1). The remanece of the samples increases by increasing the milling time while the coercivity decreases. Annealing of 15-hour milled sample results in disappearance of Mn and Ge and the formation of new phases of Mn3Ge, Mn5Ge2, Mn5Ge3 and Mn2.3Ge. Mn3Ge is the main phase with Do22 tetragonal structure and I4/mmm space group which is stable and dominant. The enhancement of saturation magnetization in the annealed sample is related to the formation of three new magnetic phases and the increase of coercivity is due to the presence of Mn3Ge compound with tetragonal structure. Studies were replicated on samples made by arc melting method to compare the results and to investigate the effect of the preparation method on phase formation and structural and magnetic properties of the materials. In these samples the saturation value was in range of 0.2 up to 1.95 (Am2Kg-1) depending on preparation methods. Rietveld refinement shows that Mn2.3Ge sample prepared from arc melted under 620oC anealing is single phase. Magnetic analysis of this sample show a saturation magnetization of 5.252(Am2Kg-1) and 0.005 T coercive field.


S. Torkian, A. Shafyei, M.r. Toroghinejad, M. Safari,
Volume 35, Issue 3 (12-2016)
Abstract

In this paper the effect of deep cryogenic treatment time on microstructure and tribological behavior of AISI 5120 case hardennig steel is studied. The disk shape samples were carburized at 920 C for 6 hours and air cooled; after austenitizing, the samples were quenched in oil.Then immediately after quenching and sanding, the sample were kept in liquid nitrogen for 1, 24, 30 and 48 h and then tempered at 200 C for 2 hours. The wear test was done by ball on disk method using of WC ball at 80 and 110 N load. For characterization of carbides, the etchant solution of CuCl2 (5 gr)+HCl (100 mL) + ethanol (100 mL) was used. The hardness of samples before and after of tempering was measured by vicers method at 300 N load.. The amount of retained austenite was measured by X Ray Diffraction method. For 1DCT and 24DCT samples it was about 8% and 4%; in the other samples, the retained austenite peal was so decreased that it was not visible. The result showed that the hardness increases by deep cryogenic treatment in all speciments. While wear resistance increases in 1DCT and 24DCT samples, it decreases for 30DCT and 48DCT samples in compare with Conventional heat treatment (CHT) sample in both applied loads, such that , 48DCT sample has the least wear resistance. The cause of increament of hardness is due to reduction in amount of retained austenite as a result of deep cryogenic treatment and decreasing in wear resistance after 24 hour, is due to carbide growth and nonhemogenuse distribution in microstructure and then weakening of matrix. So the 24 hour deep cryogenic treatment was the best optimal for AISI 5120 steel.


S. S. Seyyed Afghahi, M. Jafarian, M. Salehi,
Volume 35, Issue 3 (12-2016)
Abstract

In this research, investigation of the microstructure and magnetic properties of doped barium hexaferrite with cobalt, chromium and tin with BaCoxCrxSnxFe12-3xO19 (x=0.3,0.5) formula, was performed using solid state method. Phase and structural investigation by X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy respectively, confirmed the formation of barium hexaferrites single phase without the presence of non-magnetic secondary phase after heat treatment for 5 h at temperature of 1000 °C. Also, according to scanning electron microscopy (SEM) images, morphology of particles was perfectly hexagonal with average particle size 200-250 nm. Based on magnetic parameters measured by Vibrating Sample Magnetometer (VSM), both samples were soft magnetic and the highest saturation magnetization was obtained for the sample with composition of BaCo0.3Cr0.3Sn0.3Fe11.1O19. The values of saturation magnetization (Ms) and the coercivity (Hc) were 42.21 emu/g and 656 Oe respectively for this compound.


S.t. Mohammadi Benehi, S. Manouchehri, M.h. Yousefi,
Volume 35, Issue 3 (12-2016)
Abstract

Magnesium-manganese ferrite nanopowders (MgxMn1-xFe2O4, x=0.0 up to 1 with step 0.2) were prepared by coprecipitation method. The as-prepared samples were pressed with hydrolic press to form a pellet and were sintered in 900, 1050 and 1250˚C. Scanning Tunneling Microscope (STM) images showed the particle size of powders about 17 nm. The X-ray patterns confirmed the formation of cubic single phase spinel structure in samples sintered at 1250˚C. Substituting Mg2+ with Mn2+ in these samples, the lattice parameter decreased from 8.49 to 8.35Å and magnetization saturation decreased from 74.7 to 21.2emu/g. Also, coercity (HC ) increased from 5 to 23Oe and Curie temperature (TC ) increased from 269 to 392˚C. Samples with x= 0.2, 0.4, 0.6 sintered at 1250 ˚C, because of their magnetic properties, can be recommended for hyperthermia applications and for phase shifters.


M. Mousapour, M. Azadbeh, A. Mohammadzadeh,
Volume 35, Issue 3 (12-2016)
Abstract

In this paper, the possibility of elephant foot phenomenon in sintered alloys with volatile components has been studied. To do this, Cu-28Zn brass samples were sintered at the range of 890-970°C for 20 min. The in situ images from brass samples were taken at various sintering conditions. It is concluded that although liquid is pulled down by gravity, but elephant phenomenon was not appeared in these compacts. Instead, the samples were swelled. Chemical composition change and pores coarsening due to zinc evaporation could be considered as the main cause of swelling in brass compacts.


M. H. Tahmasebi, K. Raeissi, M. A. Golozar, A. Vicenzo, M. Bestetti,
Volume 35, Issue 3 (12-2016)
Abstract

In the present investigation, Mn-Ni binary nano-oxide was deposited by potentiodynamic method on stainless steel at room temperature and the effect of annealing process (at 200 oC for 6 h) on microstructure and electrochemical performance of the synthesized pseudocapacitor was studied. The results showed the significant effect of annealing process on increasing the capacitance and decreasing the charge transfer resistance of the electrode. Field Emission Scanning Electron Miscroscopy (FESEM) images depicted interconnected and random nano-flakes in the oxide film microstructure. Moreover, a partially crystallized structure consisting disorder hexagonal birnessite type phase was formed upon annealing in the deposited oxide film with about 10 %at Ni in composition. Based on the galvanostatic charge-discharge plots, the highest specific capacitance (384 F g-1) and specific energy (53 Wh kg-1) were found at specific current of 0.1 A g-1 for the annealed oxide electrode. Finally, cycle life test results at specific current of 10 A g-1 showed an excellent cyclability and an increase of about 23% in specific capacitance of synthesized pseudocapacitor after 5000 charge-discharge cycles in 1 M Na2SO4.


B. Binesh, A. Jazayerigharehbagh, A. R. Foroghi,
Volume 35, Issue 3 (12-2016)
Abstract

In this research, the TLP bonding of IN-738LC superalloy was investigated using MBF-20 amorphous foil produced by melt spinning process. The bonding process was carried out at 1035-1080°C for 30-60 min under the vacuum atmosphere. Microstructural investigations showed that the eutectic phases formed in non-isothermal solidified zone (ASZ) are  consised of secondary phase borieds rich in nickel, chromium and nickel silicides. Nickel silicide fine precipitates are formed within γ solid solution via solid state precipitation during cooling. The centerline eutectic phases decreased with increase of the bonding time and decrease of amorphous foil thickness. It was found that isothermal solidification was completed when bonding was done at 1055°C for 30 min. However, the isothermal solidification rate decreased with increasing of the bonding temperature up to 1080°C. Unexpectedly, isothermal solidification rate decreased by increasing the tempretarure to 1080°C. The shear strength increased by completing isothermal solidification stage and eliminating brittle secondary phase particles in the centerline of bonding zone.


M. Pourkarimi, B. Lotfi, F. Shahriari Nogorani,
Volume 35, Issue 4 (2-2017)
Abstract

In this study, creation of a silicon aluminide coating on IN738LC nickel-based superalloy has been investigated, using co-deposition process. Thermochemical calculations indicated the possibility of obtaining a silicon aluminide with NH4Cl activated pack powder at 900°C, in order to achieve coating with desirable structures. Two powder mixtures with nominal compositions of 7Si-14Al-(1-3) NH4Cl-Al2O3 (wt. %) and 16Si-4Al-(1-3) NH4Cl-Al2O3 (4 and 0.5 Si/Al ratios, respectively) were used. According to the results, both coatings showed multi-layered structures containing AlNi2Si as dominant phase. In coating created by pack powder with Si/Al ratio of 0.5, a porous and brittle layer of NiSi was formed on the surface which deteriorated the mechanical properties of coating to some extent. It was found that inward diffusion of Al was dominant at the first stage, while afterward, inward diffusion of Si led to conversion of NiAl phase to AlNi2Si and, finally, to NiSi phase. Eventually, the sample coated by Si/Al=4, showed superior microstructural characteristics, containing desirable AlNi2Si phase without undesirable brittle NiSi phase.


S. R. Hosseini, M. Barati, E. Maghsoudi,
Volume 36, Issue 1 (6-2017)
Abstract

The aim of the present research is calculation and determination of the temperature distribution in the oxy-gas source line heating process for application in the steel plates. Analytical method was used to calculate the temperature distribution by solving mathematical equations. The temperature distribution was determined with numerical method using MATLAB software. A computerized numerical control line heating apparatus was used for carrying out the processes. ITI thermograph camera was used to measure the temperature. The effect of torch distance, gas flow and torch speed on the temperature distribution at the upper and lower surfaces of plate were evaluated. The changes of temperature distribution were achieved at torch speeds of 120, 200 and 300 mm/min, gas flow of 10, 9 and 8 lit/min and torch distances of 30, 40 and 50 mm. Calculated and measured maximum temperatures reached to 900, 810 and 720 K, and 885, 785, 690 K, at torch speeds of 120, 200, 300 mm/min, respectively. The calculated and measured maximum temperatures at gas flow of 10, 9, 8 lit/min are attained to be 900, 810 and 750 K, and 885, 795 and 740 K, respectively. Maximum calculated and measured temperatures at torch distance of 30, 40 and 50 mm are accomplished to be 900, 880 and 810 K and 885, 840 and 790 K, respectively.
 


S. Sadeghzade, R. Emadi, Sh. Labbaf,
Volume 37, Issue 1 (6-2018)
Abstract

In the recent three decades, Ca-Si-based ceramics have received great attention as an appropriate candidate for tissue engineering applications due to their remarkable bioactivity, biocompatibility, and good bone formation ability. Hardystonite is currently recognized as a bioactive and biocompatible bio-ceramic material for a range of medical applications. In the present study, for the first time, hardystonite powder and 3D hardystonite scaffold with interconnected porosity were produced using mechanical alloying synthesis and the space holder method, respectively. It was found that pure nano-crystalline hardystonite powder formation occurred following 10 h of milling and subsequent sintering at 800  C° for 3 h. The measured crystallite size of particles and the hardystonite scaffold was found to be 28 ± 2 and 79 ± 1 nm, respectively. The results also showed that nanostructured hardystonite scaffolds with the compressive strength and modulus of 0.35 ± 0.02 and 10.49 ± 0.21 MPa, the porosity of 81 ± 1% , and pores size range of 200–500 μm were successfully synthesized after sintering at 1250 °C for 3 h. During the sintering process, NaCl (80wt%, 300-420 µm), as the spacer agent, gradually evaporated from the system,producing porosity in the scaffold. Simulated body fluid (SBF) was used to evaluate the apatite formation ability of the scaffolds. The results showed that the formation of an apatite layer on the scaffold surface could be considered as a bioactivity criterion.


Page 29 from 30     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb