Search published articles


Showing 74 results for Composite

M.r. Dashtbayazi, M. Mahmoudi Meymand,
Volume 34, Issue 3 (12-2015)
Abstract

In this research, stiffness of polymer-clay nanocomposites was simulated by Mori-Tanaka and two and three dimensional finite element models. Nanoclays were dispersed into polymer matrix in two ways, namely parallel and random orientations toward loading direction. Effects of microstructural parameters including volume fraction of nanoclays, elastic modulus of nanoclays and interphase, thickness of interphase, aspect ratio of nanoclays and random orientation of nanoclays on elastic modulus of the nanocomposite were investigated by finite element model. Comparing the simulation with experimental results showed that the Mori-Tanak simulation results were closer to the experimental results. Analysis of results showed that the volume fraction of nanoclay, elastic modulus of nanoclay, deviation of nanoclay layers with respect to loading direction, nanoclays aspect ratio, thickness of interphase and the elastic modulus of interphase had respectively the most to the least effect on elastic modulus of nanocomposite.


D. Pezeshki, M. Rajabi, S.m. Rabiee, G. Khayati,
Volume 34, Issue 4 (3-2016)
Abstract

In this study, the effect of Al2O3 addition as a diluent during mechanically activated self-propagating high temperature synthesis (MASHS) of Al2O3-ZrB2 composite was investigated. For this purpose, the thermite mixture of Al, ZrO2, H3BO3 and different amounts of Al2O3 (0, 3, 6, 9 wt.%) were used as the raw materials and mechanically activated for 5 h, then furnace sintering was performed at 650 °C. The results showed that by increasing the Al2O3 content up to 6 wt.%, the intensity of exothermic peak in the DSC curves increases, but for higher additive contents it decreases. In this case, more homogenous distribution of ZrB2 particles with finer grain size was observed.


P. Radmehr, A. Zakeri, S. Alamolhoda,
Volume 34, Issue 4 (3-2016)
Abstract

In this research, TiAl/Al2O3 composite was synthesized from mechanically activated TiO2-Al powder mixtures using microwave heating.The initial powder mixtures were mechanically activated and pressed into cylindrical tablets and then heated in a microwave oven. The effect of different amounts of excess Al and microwave susceptor material (SiC or graphite) on the ignition time and the resultant reaction products were evaluated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were used for characterization of the synthesized samples. XRD patterns revealed that when there was no excess Al in the initial powder mixture, the main resulting intermetallic phase would be Ti3Al with negligible amounts of TiAl, while with 10 wt% excess Al, TiAl phase could be formed in the composite product.The results also showed that microwave synthesis took place faster and more reproducible when samples were packed in the graphite powder than when placed between two SiC blocks.


A. Abdolahi, M. R. Saeri, F. Tirgir, A. Doostmohammadi, H. Sharifi,
Volume 35, Issue 1 (6-2016)
Abstract

In this study, NBG was successfully achieved through a sol-gel technique, and to further improve its dispersibility, a crylate coupling agent was coupled onto the surface of the NBG. The 3-(Trimethoxysilyl)Propylmethacrylate coupling agent was used to the surface modification of the synthesized NBG by a wet-chemical method in a dynamic inert nitrogen atmosphere. The surface properties of the biomaterials before and after modification were characterized and compared using FTIR and AFM techniques. The characteristic peaks in FTIR spectra indicated that –CH2, –CH3 and C=O groups appeared on the surface of modified NBG, and also, AFM analysis revealed that the dispersibility of surface modified NBG was improved, significantly. The above results proved that the desired groups of 3-(Trimethoxysilyl)Propyl methacrylate had been covalently bonded onto the surface of NBG. Besides, a nanocomposite scaffold was synthesized using the synthesized NBG and polyurethane foam as raw materials. The morphology of pores, porosity contents, compress strength and bioactivity of the scaffold were studied. The results showed that the biological scaffolds for use in bone tissue engineering with the basic requirements (90% porosity and 200-600 μm pore diameter) were successfully prepared. The polymer component had no effect on the relationship between the scaffold pores and bioactivity of bioglass nanoparticles. Improvement of compressive strength and proper bioactivity of the resulted scaffold showed that it is an acceptable candidate for biomaterials applications.


S. Nikbakht Katouli, A. Doostmohammadi, F. Esmaeili,
Volume 35, Issue 1 (6-2016)
Abstract

The aim of this study was to fabricate carbon nanotube (CNT) and bioactive glass nanoparticles (BG) (at levels of
5 and 10 wt%) incorporated electrospun chitosan (CS)/polyvinyl alcohol (PVA) nanofibers for potential neural tissue engineering applications.The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy (SEM) and mechanical testing, respectively. In vitro cell culture of embryonal carcinoma stem cells (P19) were seeded onto the electrospun scaffolds. The results showed that the incorporation of CNTs and BG nanoparticles did not appreciably affect the morphology of the CS/PVA nanofibers. The maximum tensile strength (7.9 MPa) was observed in the composite sample with 5 %wt bioactive glass nanoparticles. The results suggest that BG and CNT-incorporated CS/PVA nanofibrous scaffolds with small diameters, high porosity, and promoted mechanical properties can potentially provide many possibilities for applications in the fields of neural tissue engineering and regenerative medicine.


A. Mosleh, H. Shahverdi, R. Poursalehi,
Volume 35, Issue 2 (9-2016)
Abstract

In this study, electrical wire explosion has been used to produce aluminum carbon nanotube (Al-CNT) nanocomposite particles in acetone medium. In order to synthesize Al-CNT nanocomposites, initially, CNTs were ultrasonically dispersed. Then, aluminum wire was exploded in this medium. Synthesized samples were characterized by Fourier Transform Infrared (FTIR) spectroscopy and Transmission Electron Microscopy (TEM) methods. The results exhibited formation of spherical nanoparticles in the medium. The average diameter of nanoparticles was 4 nm. Moreover, attained nanoparticles remained stable in acetone. Results revealed a good interaction between aluminum nanoparticles and CNTs in this medium. It is concluded that acetone is a suitable medium for synthesizing Al-CNT nanocomposite as appropriate dispersion of Al-CNT nanoparticles can be achieved in this medium.


M. Baradaran, S.s. Shafiei, F. Moztarzadeh, S.z. Mortazavi,
Volume 35, Issue 3 (12-2016)
Abstract

In recent years the use of nanomaterials in bone tissue engineering scaffold has been considered due to its imitating the structure of natural bone tissue which contains a nanocomposite structure mixed with a three-dimensional matrix. In the meantime, Polycaprol actone has been used as a bio-polymer in bone tissue engineering applications as a scaffold. The aim of this study is to develop porous scaffolds made of polycaprol actone/layered double hydroxide biocomposite, with appropriate mechanical, bioactive and biological properties, for bone tissue engineering application. The nanocomposite scaffolds were fabricated by the particulate leaching method and freeze-drying method. In this study, MG63 cells (osteosarcoma) was investigated for cellular study. Energy dispersive X-ray analysis confirmed uniform distribution of ceramic phase in polycaprol actone matrix. The results of mechanical tests showed the increase in young’s modulus after addition of ceramic phase. The microscopic investigations demonstrated that the pores generated after addition of ceramic phase and the average size of pores was as large as 100-600μm. Also by the addition of LDH, the hydrophilicity of PCL increased but the rate of hydroxyapatite formation was delayed due to presence of magnesium ions. The cell culture experiments confirmed the attachment and proliferation of cells on the scaffolds. The results showed that the fabricated scaffolds have the potential to be used in cancellous bone tissue engineering.


M. Golestanipour, A. Babakhani, S.m. Zebarjad,
Volume 35, Issue 4 (2-2017)
Abstract

In this study, aluminium composite foams reinforced by different volume fractions of SiC particles as reinforcement and stabilizing agent were fabricated with the direct foaming route of melt using different contents of CaCO3 as foaming agent. The density of produced foams were measured to be from 0.38 to 0.68 g/cm3. The microstructural features and compressive properties of the AA356/SiCp composite foams were investigated. The relation between plateau stress, density and, weight percentage of CaCO3 and SiCp volume fraction with a given particle size was also investigated. The results showed that compressive stress-strain curves of the products were not smooth and exhibit some serrations. Also, it was shown that in the same density of composite foams, the plateau stress of the composite foams increases with increasing volume fraction of SiC particles and decreasing weight percentage of CaCO3.


F. Mirarabshahi, A. Mashreghi, M. Kalantar, M. Mosalaei,
Volume 35, Issue 4 (2-2017)
Abstract

In this study, fabrication of an in-situ composite through aluminothermic combustion synthesis in An Al–V2O5-NiO system was investigated. Therefore, Al, V2O5 and NiO powders with stoichiometric ratio of 11:1:1, respectively, were milled for an  hour and finally the mixtures were compressed. In order to investigate the temperatures of phase transformations, Differential Thermal Analysis (DTA) was utilized. Heat treatment was applied on the raw samples according to their peak temperatures treated in DTA. X Ray Diffraction (XRD) analysis for the samples shows formation of phases such as Al3V and Al3Ni2 at different sintering temperatures. Microstructure and phase analysis showed that during sintering of this sample, Al3V phase was not formed below 700 °C, at 880 °C Al3Ni2 it was formed and after 950 °C, it was transformed to Al4Ni3 phase. In addition, after 950°C, Al3V transformed into Al23V4 phase. Analysis of samples density and hardness showed that, due to increase of volume fraction percentages of reinforcing phase, these two parameters increase as well.


M. Mottaghi, M. Ahmadian,
Volume 36, Issue 1 (6-2017)
Abstract

In this research, the wear behavior of commercial grades of WC-10wt%Co (H10F), WC-40vol%Co and WC-40vol%FeAl-B composites with different amounts of boron from zero to 1000 ppm has been investigated by the pin on disk test  method at high temperature. The wear tests were done under load of 40 N, a distance of 100 m and at ambient temperature, 200 ̊C and 300 ̊C. Wear surfaces were examined by scanning electron microscopy. The results showed that the wear resistance of all composites decreased with increasing temperature. The boron free WC-40vol%FeAl composite showed the lowest wear resistance at all ranges of temperature. In the presence of boron up to 500 ppm in iron-aluminide matrix, the high temperature wear resistance of these composites improves and the wear mechanisms changes from particle pullout into abrasive state. The toughness enhancement of these composites and plasticity enhancement of iron aluminide in the presence of boron, leads to better link of the interface of FeAl matrix and tungsten carbide particles, and thus increases the wear resistance of these composites. WC-40vol% FeAl-500ppmB composite has a higher wear resistance at high temperature than WC-40vol% Co and commercial WC-10wt% Co.
 


M. Tavoosi, S. Rizaneh, G. H. Borhani,
Volume 36, Issue 1 (6-2017)
Abstract

Investigating the effect of Al2O3-TiB2/Fe complex reinforcement (CCMR) on the mechanical properties of aluminum composites was the goal of this study. For this purpose, the Al2O3-TiB2/Fe reinforcement powders were synthesized during milling and subsequent annealing. Different volume percentages of the produced reinforcement powders (1.25, 2.5 and 5 vol.%) were added to aluminum matrix, milled for 10 h and then hot extruded. The structural phasic and mechanical investigations of the specimens were carried out using X-ray diffraction, scanning electron microscopy and tensile test. The results showed that the metallic component (Fe rich phase) in this new type of reinforcement stuck the ceramic parts (Al2O3-TiB2) to aluminium matrix, and has an importance role in the flexibility of the product. The best volume percentage of CCMR in aluminium matrix was about 2.5%. This nanocomposite had a combination of strength and ductility of about 500 MPa and 6%, respectively.
 


M. Soltani, B. Niroumand, M. Shamanian,
Volume 36, Issue 2 (9-2017)
Abstract

In this paper, the optimization of the surface composite of Mg AZ31B-carbon nanotub(CNT) via friction stir processing was investigated. Then, the most effective process parameters such as transverse speed, rotational speed, CNT weight percent and welding passes were studied by Response Surface Methodology (RSM) design of experiment. The specimens were also characterized by micro-hardness, tensile, shear punch and pin on disk dry sliding wear tests. The optimization results of hardness and weight reduction responses showed that the best conditions would be achievable with a transverse speed of 24 mm/min, rotational speed of 660 rpm, 4wt.% CNT and 3 welding passes. Moreover, fracture analysis of the surfaces proved a uniform distribution of CNTs in the matrix resulted in higher tensile and shear strength.
 


Mrs M. Akbari, Dr S. Sabooni, Dr M. H. Enayati, Dr F. Karimzadeh,
Volume 36, Issue 2 (9-2017)
Abstract

In the present study, FeAl/Al2O3 nanocomposite coating was produced on the carbon steel plate using mechanical alloying (MA) technique via a mechanochemical reaction. Stoichiometric ratios of Fe, Al and Fe2O3 as well as a substrate were mixed and milled up to 22h in a vibrating high energy mill with a 4 mm ball. Samples prepared after 18h of MA were subjected to annealing at 773 K for 1-3 h. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and microhardness measurements were carried out to study mechanochemical reaction and coating formation characterization. The results showed that mechanochemical reactions were started after 10h of MA, which finally caused the slight formation of FeAl/Al2O3 nanocomposite. Increasing the milling time to 18 hours led to the continuous increase of the coating thickness up to 80 μm, while the coating layer fractured and began to peel by further milling. The microhardness of the coating after 18h milling was 1050 vickers. Annealing of the 18h milled powders at 773K for 3h led to the complete formation and synthesis of the FeAl/Al2O3 nanocomposite. The results showed that the annealing treatment had considerable effects on the hardness increase up to 1200 vickers as well as adhesion strength of the composite coating.
 


D. Azadrooy, H. Saghafian,
Volume 36, Issue 3 (11-2017)
Abstract

The effect of stir casting process on the modification of the Fe-containing intermetallics formed in a cast in-situ composite based on Al-319 matrix alloy was studied in the present work. Microstructural observations using optical and scanning electron microscopes showed that the undesirable needle-like shape of the Fe-containing intermetallics (β) and also the coarse star-like α compounds were modified into the disc and spheroid shape particles with much less length to width ratio. The effect of parameters such as stirring temperature, cooling rate and Fe contents on the shape, size and distribution of intermetallic particles and eutectic Si blades were also studied. Results showed that the best condition to improve the shape, size and distribution of  intermetallic particles can be achieved at a stirring speed of 1200 rpm for 5 minutes at the vicinity of β needles nucleation temperature followed by casting into a metallic mold. Based on the results obtained from the current work, it can be concluded that the harmful morphology of the β intermetallic needles can be properly modified by applying a shearing force during stirring the molten alloy in the semi-solid state.

S. Daneshvar E Asl, S. K. Sadrnezhaad,
Volume 36, Issue 3 (11-2017)
Abstract

TiO2/MWCNT nanocomposite thin films containing different percentages of multi-walled carbon nanotubes were coated on fluorinated tin oxide substrates by sol-gel dip coating method. Results of X-ray diffraction analysis indicated that the crystal structure of the coatings was anatase TiO2. It was also understood that the size of crystallites reduced with CNT but structural properties and equilibrium phase remain intact. Field emission scanning electron microscope images showed that CNTs dispersed uniformly among 45 nm spherical TiO2 particles of close relations. These images also showed that CNT promoted cracks on the coated surface. Results of the UV-Vis spectroscopy showed that the visible light range adsorption  increased with CNT and the absorption edge did not significantly differ with the pure TiO2 layers.. Results of the photoluminescence spectroscopy revealed that the presence of CNT could reduce the pair electron–electron holes recombination which is considered totally undesirable.
 


M. H. Bakhshi, A. Zakeri,
Volume 36, Issue 4 (3-2018)
Abstract

Electrowinning is one of the methods for recovery of nickel metal from pregnant leach solutions. In industrial practice, the Ni content in electrolytes is usually above 80 g/L. However, many nickel solutions obtained from processing of secondary nickel resources are much less concentrated and this makes the electrowinning of such solutions difficult. In the present study, Nickel electrowinning from 30 g/L sulfate solutions has been investigated and the effect of the parameters such as current density (CD), temperature (T) and boric acid concentration (BA) on the current efficiency and nickel deposit quality has been determined using a central composite design methodology. The statistical analysis of experimental results revealed the significant factors and a proper model was obtained for each response variable. The results revealed two important negative interaction effects of T´BA and CD´BA which means that increasing temperature and current density could result in a higher current efficiency and satisfactory Ni deposit quality only at lower boric acid concentrations. By using overlaid contour plot method for multiple response optimization, the optimum condition for attaining current efficiencies of >95% and a smooth  and compact Ni deposit quality was determined as CD = 2-2.5 A/dm2, T = 25-30 °C, and BA = 10 g/L.

M. Alizadeh, A. Cheshmpish,
Volume 37, Issue 2 (9-2018)
Abstract

In this research, Ni-Mo-Al2O3 composite coatings were electro-deposited on the mild carbon steel in a citrate bath containing micro- sized Al2O3 particles. Afterward, the effect of the particle concentration in the electrolyte bath (ranging from 0 g/L to 30 g/L) on the microstructure, microhardness, and corrosion performance was evaluated. To investigate the microstructural changes and the surface morphology of the coatings, as well as the particle distribution in the deposits, optical and scanning electron microscopy coupled with the energy dispersive X-ray spectroscopy was utilized. The corrosion behavior of the prepared coatings was investigated in a 3.5 wt. % NaCl solution. The results showed that the presence of the Al2O3 particles in the Ni-Mo coatings changed the  microstructure and also, increased the  microhardness and corrosion resistance of them. It was also found that the desirable structure of the protruding crystallite morphology with no detectable pores could  be achieved at the medium concentrations of reinforcement (e.g. 20 g/L). Further the optimum concentration of the particles in the electrolyte bath to attain the composite coating with the desirable microstructure and consequently, the desirable corrosion resistance was found to be 20 g/L.

S. F. Shams, M. Ebrahimian-Hosseinabadi,
Volume 37, Issue 2 (9-2018)
Abstract

The purpose of this paper was modeling and mechanical analysis of the biodegradable biphasic calcium phosphate/silk (BCP/Silk) laminated composite bone plate for fractured tibia healing; to this aim,ABAQUS 6.13 was employed for modeling and mechanical analysis. First, the tibia bone was considered based on the anthropometric measurements of an average person as a two-layer cylinder; the inner part was the bone marrow and the outer one was the cortical bone. Then, the bone plate and screws were designed according to the defined standards and the properties of new composite in the ABAQUS software. The mesh of bone plate and other equipments were selected to be tetragonal and cubic, respectivelly. After that, the bone plate was placed on the bone while the bone was bounded along the Y axis and the force of around 400 N was loaded. The results showed that the biocompatible and biodegradable composite bone plate had the elastic modulus of about 21 GPa, which was close to the bone modulus.

Sh. Tavakoli Dehaghi, S. Darvishi, Sh. Nemati, M. Kharaziha,
Volume 37, Issue 3 (12-2018)
Abstract

Abstract: With the advances in the development of biomaterials for tissue replacement, the attention of scientists has been focused on the improvement of clinical implant properties. In this regard, despite the appropriate properties of the stainless steel, the application of stainless steel as implants has been limited due to the weak corrosion resistivity. The purpose of this paper was preparation and characterization of hydrophobic polydimethylsiloxane (PDMS)-SiO2-CuO nanocomposite coating on the 316L stainless steel surface. The 316L stainless steel was coated by SiO2 nanoparticles (20 wt. %), CuO nanoparticles (0.5, 1 and 2 wt. %) and biocompatible PDMS. In this research, x-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to characterize the coating. Moreover, the roughness and water contact angle of the coatings consisting of various amounts of CuO nanopowder were estimated. Finally, the effects of various amounts of the CuO nanopowder on the corrosion resistivity of nanocomposite coatings were investigated. XRD patterns confirmed the presence of crystalline CuO nanoparticles on the substrate. Due to the non-crystalline nature of silica nanoparticles and the semi-crystalline PDMS polymer, no peak confirming the presence of these phases was detected on the XRD pattern of the nanocomposite coating. SEM images showed the formation of a lotus leaf-like layer on the surface of the nanocomposite coating containing 1 and 2 wt. % CuO. Moreover, water contact angle evolution revealed that while contact angle was 81 degree without CuO nanoparticles, it was enhanced to 146 degree in the presence of 1 wt. % CuO. Moreover, the corrosion study showed the nanocomposite containing 2 wt.% CuO had the best corrosion resistance, the corrosion current density of 2.1E-7 A.cm-2, and the corrosion potential of 0.22 V.

M. Zadali Mohammad Kotiyani, Khalil Ranjbar,
Volume 38, Issue 1 (6-2019)
Abstract

In this research, an in-situ hybrid composite reinforced by Al3Zr and Al3Ti aluminide particles was fabricated by friction stir processing (FSP). The base metal was in the form of a rolled Al 3003-H14 alloy sheet, and zirconium and titanium metal powders were used as the reinforcements. Six passes of FSP were applied. Tensile strength and hardness of the base metal, as well as FSPed samples before and after applying heat treatment, were determined. Microstructural examinations were performed using optical and scanning electron microcopy (SEM), and phase formation was identified by X-Ray diffraction. Microstructural examination revealed that by applying FSP, the prior large and elongated grains of the base metal were converted to the fine and equiaxed grains. It was also observed that chemical reactions occurred at the interface between the aluminum matrix and the metallic powders, forming in-situ aluminides of Al3Zr and Al3Ti. The post annealing heat treatment activated these solid state chemical reactions and more aluminides were formed. It was also found that the heat treated hybrid composite possessed the highest tensile strength and hardness values. The tensile strength in such samples reached 195 MPa, as compared to 110 MPa of the base metal.


Page 3 from 4     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb