Search published articles


Showing 110 results for Ge

K. Badv,
Volume 23, Issue 2 (1-2005)
Abstract

This study is an attempt to introduce scientific fundamentals and available methods for wellhead protection area (capture zone) delineation for drinking water wells in cities. The results of this study could obviate some demands of the national water and wastewater company in quality control of the drinking water resources by delineation and application of the wellhead protection areas. For this purpose, the available literaturer reviewed to extract, criteria and methods of wellhead protection delineation, Then, (1) fixed radius method, (2) simplified variable shape methods, and (3) flow-transport analytical methods implemented in the computer code WHPA are introduced. The applicability of these methods is shown by some sample calculations for Urmia drinking water wells. Samples of the calculated wellhead protection areas for 36 wells in Urmia City will be shown using three analytical modules in WHPA. The effects of the hydrogeologic parameters on the wellhead areas will be discussed. When reliable hydrogeologic parameters are available in the region where wells are located, the analytical methods and WHPA code produce accurate results for wellhead protection areas.
S. H. Hosseini, H. Seifi, M. Parsa, M. R. Omidkhah, M. Farmad and M. Gaznavi,
Volume 24, Issue 1 (7-2005)
Abstract

Generation Expansion Planning (GEP) is one of major modules of power system planning studies, normally performed for the nex 10-30 years horizon. The current industrial practices are to find the generation requirements based on a nodal analysis. In this way, the allocations are not determined and subequent studies are required to find the exact locations which as decomposed from the earlier stage, may result in non-optimum solution. A new approach is proposed in this paper in which, based on dynamic programming and sensitivity factors, GEP is performed with due to consideration of transmission system effects. In this way, the allocations of justified generation plants are also determined. The results for Iranian Power Grid for the years 2011 to 2021 are demonstracted.
B. Saghafian, S. Rahimi Bandarabadi, H. Taheri Shahraeeni and J. Ghayoomian,
Volume 24, Issue 1 (7-2005)
Abstract

Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only mus temporal pattern of rainfall t be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of suitable methods may lead to errors in input parameters of rainfall – runoff models. Interpolation methods are among the techniques for estimating spatial distribution of rainfall. In this study, Thin Plate Smoothing Splines (TPSS), Weighted Moving Average (WMA) and Kriging are applied to estimate spatial daily rainfall in the southwest of Iran. Cross validation technique is used for comparison and evaluation of the methods. The results of analysis with two different station density showed that the TPSS method with power of 2 is the most accurate method in estimating daily rainfall. Zoning of the region also increased the interpolation accuracy. Generally speaking, division of the region based on cluster analysis improves accuracy compared with division by inter basin boundaries
S. Roushanbin, M.r. Maheri and A Rangbaran,
Volume 24, Issue 1 (7-2005)
Abstract

There are a number of parameters influencing the dynamic and seismic response of bridges. Of these, two important parameters warranting special notice include: the properties of the neoperenes in the state of connection between girders and columns and the shear stiffness of underlying soil in the level of bridge substructure’s connectivity to the ground. In this paper, the effects of these two parameters on the dynamic and seismic response of Ghadir Bridge in Isfahan are investigated. The main conclusions drawn from these investigations include: the sensitivity of the bridge’s lateral modes of vibration to the horizontal shear stiffness of the neoperenes and the substantial effects of the soil’s shear rigidity on the longitudinal modes. Based on the findings, it is recommended tha a thorough geotechnical site investigation of the soil be conducted and the properties of the underlying soil be accurately established in order to correctly identify the dynamic behaviour of a bridge.
M. Shamanian and A. Saidi,
Volume 24, Issue 1 (7-2005)
Abstract

The 25Cr-35Ni heat resistant steel has been widely used when resistance to oxidation and creep rapture at elevated temperatures is required. In this paper, the microstructural effect on the weldability of this alloy is investigated. The results of this study indicate that this steel has a perfect weldability in the as cast condition but does not possess good weldability in the aged condition. The as cast microstructure of 25Cr-35Ni steel consists of austenite matrix and a network of primary carbides, while the aged condition consists of austenite matrix and y primary and secondary carbides. The morphological change of primary carbides and the secondary carbides precipitate formation, reducing the elongation and ductility of aged steel, should have enhanced the steel susceptibility to cracking, particularly in the area of the eutectic carbides, and hence, the reduced weldability of the steel. The cracking observed was of the intergranular type and spread along the eutectic carbides. It was found that the carbides in the as cast steel consisted of NbC and M23C6, whereas that of the aged steel also exhibited Ni16Nb6Si7 and M23C6 carbides
S. M. Mortazavi and M. Sedighipoor,
Volume 24, Issue 1 (7-2005)
Abstract

The presence of defects in cold mercerizing of cotton goods led to the creation of a new method, called hot mercerizing in which caustic soda solution is used at a high temperature. Hot mercerizing is successfully used in cotton blended with some other fibers. In cotton/polyester blend fabrics, this treatment serves a dual purpose: subjectively, it imparts a silklike soft handle to the polyester and brings about mercerizing of the cotton. In this work, the mercerizing operation with caustic soda solution was performed on a 65/35 polyester/cotton fabric in sixteen different temperatures (from 15°C to 90°C), in two states: with tension and without tension. Finally, the effect of temperature of treatment on some properties of fabric such as tensile properties, weight loss, and shrinkage have been studied. Alkali treatment cause weight loss in cotton/polyester blend fabrics, the main part of the weight loss attributed to the polyester component of the blend. Increasing temperature leads to a corresponding increased in weight loss. The resulting weight loss leads to more yarn release and consequently, to the improvement of the drape and soft handle in the fabric. However, it decreases the tensile strength and causes weakness of the fabric, therefore, an optimum of temperature must be considered. In the alkali treatment, the internal stresses in the fabric can be released. Release of tension in the fabric causes shrinkage, particularly in the warp direction. The effect of tension on properties of cotton/polyester blend fabric is not considerable in alkali treatment.
J. Safarian-Dastjerdi and A. Saidi, ,
Volume 24, Issue 1 (7-2005)
Abstract

A higher bustle temperature in midrex direct reduction process is always desirable due to its positive effect on the productivity and DRI quality. The limit of the bustle temperature is related to the sticking or clustering behaviour of oxide pellets during the reduction in the reactor. It has been well estabilished that coating of oxide pellets by a refractory material decreases its tendency to clustering. In this study, the clustering behaviour of oxide pellets (produced from Golegohar-Chadormalu iron ore) during redution at different temperatures was investigated. The effect of coating with different amounts of hydrated lime on the clustering behaviour was also examined. Microscopic examination of coated pellets shows a porous, non-continious layer of Ca(OH)2 being fromed on the surface of the pellets. The clustering tendency of coated pellets, measured by the standard sticking test at pilot scale, was much lower, compared with normal (uncoated) pellets, while their reducibility was the same.
M. Kamalian and A. Sohrabi Bidar,
Volume 24, Issue 2 (1-2006)
Abstract

This paper presents the complete algorithm of site response analysis of nonhomogeneous topographic structures using transient two-dimensional boundary element method (BEM). Seismic behaviour of various topographic features including canyon, half plane, sedimentary filled valley and ridge sections, subjected to incident SV and P waves are analysed. The analysis shows the efficiency of the proposed algorithm and its advantage over common transformed domains methods in forming a basis for extension to non-linear behaviour.
M. E. Hamedani Golshan, S. A. Arefifar, and Gh. Moslehi,
Volume 25, Issue 1 (7-2006)
Abstract

Introducing distributed generation into a power system can lead to numerous benefits including technical, economic, environmental, etc. To attain these benefits, distributed generators with proper rating should be installed at suitable locations. Given the similar effects of distributed generators and capacitor banks on operation indices of a distribution system, simultaneous assignment of best locations and sizes to both will not only lead to greatest benefits from distributed generators but also to lower reactive power capacity requirements. In this paper, a new combined planning problem involving distributed generation and Volt/VAr control means planning is formulated and solved in which the quantity of distributed generators and reactive power sources are simultaneously assigned to buses in a distribution system. Also tap positions of voltage regulators are computed such that with a given distributed generation under peak load conditions, power losses and the reactive power capacity required are minimized. Like many other problems in power network planning, the problem formulated here is a nonlinear combinatorial one. Hence, we employ the tabu search algorithm to solve the optimization problem. The results from applying the algorithm to distribution networks with 6, 19, and 33 buses are presented and compared with those obtained from employing the second order method.
M. Ebrahimi, M. Moradiyan, H. Moeshginkelk, M. Danesh, and M. Bayat,
Volume 25, Issue 1 (7-2006)
Abstract

This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in order to check the performance of the motor for any faults in the parts. Then the frequency spectrum of current signals is derived using the Fourier transform and analyzed under various conditions. In the second part of the paper, an analytical discussion of the theoretical principles is presented to arrive at a simple algorithm for fault detection based on neural networks. The neural network has been trained using the information from a 1.1 KW induction motor. Finally, the system is tested with different values of load torque and is found capable of working on-line to detect all normal and ill-performing conditions.
A. F. Nateghi, A. Vasseghi, and V. L. Shahsavar,
Volume 25, Issue 1 (7-2006)
Abstract

Bridges are potentially one of the most seismically vulnerable structures in the highway system during earthquake events. It is known that the seismic performance of transportation systems plays a key role in the post-earthquake emergency management. Hence, it is necessary to evaluate both physical and functional aspects of bridge structures. The physical aspects of the seismic performance of bridges are evaluated by seismic fragility functions or damage probability matrices of transportation facilities. The fragility curves represent the probability of structural damage due to various levels of ground shaking. The fragility curve describes a relationship between a ground motion and a level of damage. In this paper, the fragility curves (F.C) are developed. The vulnerability of a railway prestreed concrete bridge is assessed using fragility curves derived from dynamic nonlinear finite element analysis. A software package is developed in MATLAB to study the results obtained. Modeling of the bridge using 3D nonlinear models and modeling of abutments, bearings, effect of falling of girder on its bearings, and nonlinear interaction of soil-structure are some of the advantages of this research compared to previous ones. Reliability curves developed in this study are unique in their own kind. The proposed method as well as the results are presented in the form of vulnerability and structural reliability relations based on two damage functions.
D. Mostofinejad and M. Hoseinian,
Volume 25, Issue 2 (1-2007)
Abstract

It is well known that the characteristics of concrete components greatly affect the durability of high strength/high performance (HS/HP) concrete against frost action. Undoubtedly, precise recognition of this relationship leads to appropriate selection of the type and proportions of concrete components in any particular project. In the current study, the aim is to investigate the possibility of developing some mathematical-experimental models to explain the frost resistance of high-performance concrete, regarding the role of some of its main components. To do so, the effects of four key elements, i.e. water, silica fume, coarse aggregate, and number of freeze-thawing cycles, were studied on the frost resistance of HS/HP concrete were studied. 24 concrete mix designs including 3 ratios of water to cementitious materials, i. e. 0.4, 0.3, and 0.25 4 ratios of silica fume to cementitious materials, i.e. 0, 5, 10, and 15 percent and 2 types of coarse aggregates, i. e. Limestone and Quartzite were utilized for HS/HP concrete. Overall, about 432 concrete cubes were cast, cured and tested under freeeze-thaw cycles. Finally, some models were proposed for describing the frost resistance of high strength concrete.
M. R. Tabeshpour, A. A. Golafshani, A. Bakhshi, and A. Moayed Alaei,
Volume 25, Issue 2 (1-2007)
Abstract

The assessment of seismic performance of existing structures is becoming an important problem in earthquake engineering. Some important ructures are considerably old and, therefore, their strengths and ductilities are less than strength and ductility demands because of changes in codes and design methodologies. Such structures must be strengthened to resist future earthquakes. First, a structural model must be developed and then, based on seismic hazard and seismic risk analysis or code quantities, the design (or control) parameters can be determined. The next step is defining the damage indices in order to quantify the structural damage. Then the nonlinear dynamic analysis is carried out and damage indices are calculated. In the present paper, a power plant stack (located in Mashhad) is investigated for some levels of peak ground acceleration (PGA) considering return periods of 75, 500, 1000, and 2500 year. The height of stack is 100 m and the external diameter of the structure is 10 m. Several records are used for nonlinear dynamic analysis. It has been used from Park-Ang damage index that is a suitable model for concrete structures and has been considered in IDARC. It is clear that nonlinear dynamic analysis is necessary for the seismic vulnerability of existing structures. Special structures such stacks can be modeled with some 2-D or 3-D elements. However, the beam-column element is a proper model for special structures such as chimneys, considering calculation cost.
M. H. Bagheripour, E. Shasavandi, and S. M. Marandi,
Volume 25, Issue 2 (1-2007)
Abstract

This paper introduces an accurate, fast, and applicable method for optimization of slip surfaces in earth slopes. Using Genetic Algorithm (GA), which is one of the modern and non-classic optimization methods, in conjunction with the well -known Bishop applied method, the optimum slip surface in an earth slope is investigated and its corresponding lowest safety factor is determined. Investigations have shown that selection of appropriate variables to define and to solve the problem and determination of a good range for these variables have a profound effect on the speed of convergence in the problem. In the present study, appropriate variables have been defined for solving the problem in a way that the number of repetitions required to reach convergence are considerably reduced by up to 50% compared with other approaches. This has led to a drastic reduction in time and the memory required. The accuracy of the method is shown first by solving examples related to search for optimum failure surfaces of some homogenous, non-homogenous, and earth dam slopes and then by comparison of the results with those of other optimization techniques. In order to show the application of the present method in modern geotechnical engineering, a reinforced earth slope is studied and its failure surface is finally optimized
M. Talebi, E. Shirani, and M. Ashrafizadeh,
Volume 25, Issue 2 (1-2007)
Abstract

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS equations with the multiblock method was parallelized. Parallelization of the computer code was accomplished by splitting the calculation domain into several subdomains and using different processors in such a way that the computational work was equally distributed among processors. The discretized governing equations are second order in time and in space and the pressure is calculated by Momentum Interpolation Method (MIM) to prevent the checkerboard problem. The results are obtained for the turbulent flow over five parallel tube rows. The computational efficiency, flow patterns, and flow properties are also determined. The results showed high parallelization efficiency and high speed up for the computer code. The flow characteristics were determined and compared with experimental results which showed good agreement. Also, the results showed that the mixed model is better than the Smagorinsky model for evaluation of flow characteristics and lift and drag forces on tubes.
M. Mashayekhi, S. Ziaei-Rad, and J. Parvizian,
Volume 25, Issue 2 (1-2007)
Abstract

The continuum mechanic simulation of micro-structural damage process is important in the study of ductile fracture mechanics. In this paper, the continuum damage mechanics model formulation proposed by Lematire has been validated against ductile damage evolution experimentally measured in A533B-C1 steel under stress triaxiality conditions. First, a procedure to identify the model parameters from test was defined. Then, the finite element model was used to simulate the experiment carried out on a notched flat rectangular bar. Good agreement was observed between the experimental results and finite element predictions. Next, the identified parameters on A533B-C1 steel were used to simulate the results from a conventional tensile test by finite element method. The specimen was prepared according to ASTM E08 standard. The stresses at necking stage and ultimate load calculated by the damage based method were compared with those obtained from the test. The comparisons indicate a good agreement between the simulated and the experimental results.
M. Darbandi, V. Mokarizadeh, and E. Roohi,
Volume 25, Issue 2 (1-2007)
Abstract

The main objective of the present study is to utilize a novel linearization strategy to linearize the convection terms of the quasi-one-dimensional Euler governing equations on collocated grids and to examine its shock-capturing capabilities. To avoid a pressure checkerboard problem on the collocated grids, it is necessary to utilize two velocity definitions at each cell face. Similarly, we define two velocity expressions at cell faces known as convecting and convected velocities. We derive them from the proper combinations of continuity and momentum equations which, in turn, provide a strong coupling among the Euler discretized equations. To achieve this, we utilize an advanced linearization strategy known as Newton-Raphson to linearize the nonlinear convection terms. The key point in this linearization is to preserve the original physics behind the two velocities in the linearization procedure. The performance of the new formulation is then investigated in a converging-diverging nozzle flow. The results show great improvement in both the performance of the original formulation and in capturing shocks. The results also indicate that the new extended formulation is robust enough to be used as an all-speed flow solver.
S. Hatami, M. Azhari, and M.m. Saadatpour,
Volume 26, Issue 1 (7-2007)
Abstract

Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange interpolation functions. The spectral method is, in fact, the solution of motion equation for an axially moving plate. Although this method has some limitations concerning boundary condition of plate and in-plane forces, it leads to an exact solution of free vibration and stability of plates travelling on parallel rollers. The method can be used as a benchmark of accuracy of other numerical methods.
H. Moharrami, M.t. Shahrabi Farahani and H. Shourabi,
Volume 26, Issue 1 (7-2007)
Abstract

Marine structures are one of the most important and susceptible facilities in Iran due to corrosion. The two methods of Cathodic Protection, namely, the cathodic protection with sacrificial anodes and cathodic protection using impressed current, are widely used for corrosion protection. According to the former, sacrificial anodes are installed at several points in the structure. Position of the anodes for achieving the required protection is a problem that engineers are very much interested in, and only empirical methods have so far been used to determine these positions. Empirical rules, however, might cause either overprotection or underprotection. A major goal of this research is to develop a systematic way for analysis and automated design of Cathodic Protection systems that not only deliver almost uniformly protected structures but also minimize the costs. To this end, a Genetic Algorithm (GA) routine is used to determine the optimal position of anodes on the structure such that a uniformly protected design with minimum cost is achieved. The percentage of protection in each design has been taken as its fitness criterion. To figure out the situation of corrosion protection on the structure, the entire offshore structure with its complex system at anodes and surrounding electrolyte is modeled and analyzed by a finite element algorithm. Employing GA gradually modifies the generation of designs. The design which completely protects the structure and whose cost is minimum is introduced as the optimum design. To show the capability of the proposed method in achieving the optimum design, two examples are offshore presented.

Page 2 from 6     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb