Search published articles


Showing 110 results for Ge

S. Amiri and S. H. Amirshahi,
Volume 26, Issue 2 (1-2008)
Abstract

The reflectance factors of transparent fibers, free delustering agent, are predicted by geometric as well as Kubelka-Munk models. Transparent fibers are simulated by a net of glass capillary tubes containing different solutions of dyestuffs. Based on the results, prediction of the reflectance factor of capillary net by geometric model is relatively better than those obtained from Kubelka-Munk model. However, the geometric model suffers from a complex and massive computation process. Generally speaking, the geometric model performs better for dark transparent samples due to the ignorable internal scattering phenomena. On the other hand, the Kubelka-Munk model provides better results for light samples, where the geometric model fails in acceptable prediction.
Mehdi Khashei and Mehdi Bijari,
Volume 26, Issue 2 (1-2008)
Abstract

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need large amounts of historical data. Although fuzzy forecasting models such as fuzzy regression are suitable metods when the data available is scant, their performance is not satisfactory at times. In this paper, a new Fuzzy Auto Regressive Integrated Moving Average (FARIMA) is presented. The proposed model can be run with less data, so it is more suitable than other models for cases where there are limited data available. The results obtained on exchange rate forecasting reveal the efficiency of the proposed model.
M. Sheikhan and M. E. Kalantari,
Volume 27, Issue 1 (7-2008)
Abstract

This paper tries to estimate the capital investment required for the fixed-telephony network switching equipment as demanded by the fourth national development plan. As a first step, the Cobb-Douglas model is used as a successful demand forecasting model to estimate the demand over the target years. Then, an architectural plan is developed for the fixed-telephony switching network that takes into account the expansion of the existing exchanges as well as the addition of new ones. The number of the required ports in local exchanges, the intercity traffic (including cell phone subscribers), and the required trunks in transit exchanges are then estimated. Two scenarios are used to estimate the investment needed: expanding legacy network (circuit-based), and NGN adoption (a combination of circuit and packet-based networks). Finally, conventional pricelists from different local and foreign suppliers are used to arrive at two total investment estimates: 6,013 billion Rials and 6330 billion Rials for the two mentioned scenarios, respectively.
R. Tavakkoli-Moghaddam, M. Rabbani, and M.a. Beheshti,
Volume 27, Issue 1 (7-2008)
Abstract

This paper presents a nonlinear mixed-integer programming model to minimize the stoppage cost of mixed-model assembly lines. Nowadays, most manufacturing firms employ this type of line due to the increasing varieties of products in their attempts to quickly respond to diversified customer demands. Advancement of new technologies, competitiveness, diversification of products, and large customer demand have encouraged practitioners to use different methods of improving production lines. Minimizing line stoppage is regarded as a main factor in determining the sequence of processing products. Line stoppage results in idleness of operators and machines, reduced throughput, increased overhead costs, and decreased overall productivity. Due to the complexity of the model proposed, which belongs to a class of NP-hard problems, a meta-heuristic method based on a genetic algorithm (GA) is proposed to obtain near-optimal solutions in reasonable time, especially for large-scale problems. To show the efficiency of the proposed GA, the computational results are compared with those obtained by the Lingo software.
A. Samadi, A. Abdollah-Zadeh, S.h. Razavi , H. Assadi,
Volume 29, Issue 1 (6-2010)
Abstract

The initial stages of the  precipitation in a dilute Ni-Al binary alloy, Ni-11.6 at.%Al, were studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), electron diffraction and electron microscopy (FEG-SEM and TEM) techniques. Three samples were similarly solution treated and then cooled to room temperature under different cooling rates, 170، 25 and 0.03oCs-1. The results indicate a clearly homogenous  nucleation during rapid quenching which takes place via simultaneous ordering and phase separation. However, by decreasing the cooling rate to 25oCs-1 the nucleation mechanism changes to heterogeneous on the preferred nucleation sites. The capability of the mentioned empirical techniques for studying the initial stages of the γ′ is another subject which is studied in this article.
S. Salehi, M. H. Fathi, K. Raeissi,
Volume 29, Issue 1 (6-2010)
Abstract

The addition of ZrO2 particles to the HA coating has received considerable attention because ZrO2 particles increase the bonding strength between HA coating and substrate. In this study, nanostructured hydroxyapatite (HA)/yttria stabilized zirconia (YSZ) coatings were prepared by a sol–gel method. It was found that at 950ºC, the dominant phases were HA and tetragonal (t)-zirconia in 3YSZ, cubic (c)-zirconia in 8 YSZ and t-c-Zirconia in 5YSZ phases with the small amounts of β-tricalcium phosphate (β-TCP) and CaZrO3. The crystallite size of the coating was about ~20-30 nm for tetragonal and cubic zirconia grain size and 40-80 nm for hydroxyapatite grain size. Crack-free and homogeneous HA/YSZ composite coatings were obtained with no observable defects. In vitro evaluation in 0.9% NaCl showed that Ca2+ dissolution rate of composite coatings was lower than that of pure HA coatings. The decrease in electrochemical performance of these coated samples in comparison with the uncoated type 316L St.St could be associated with chloride ion and water penetration into the coating, transport of ions through the coating, and the subsequent electrochemical reactions at the coating–metal interface.
H. Edris , M. H. Fathi,
Volume 29, Issue 2 (12-2010)
Abstract

Fabrication of biomaterials with ability to form a bond with bone tissue for bone skeletal system repair is one of the biomaterial science aims. Bioactive glasses containing CaO-SiO2-P2O5 are among the most important groups used in biomedicine and dentistry such as bone defect repair and maxillo-facial reconstruction. The aim of this work was preparation and characterization of nano particle bioactive glass with optimum bioactivity. Bioactive glasses with three different compositions (45S, 49S and 58S) were prepared via sol- gel technique. X- ray diffraction (XRD) technique and X- ray fluorescent (XRF) method were utilized for the phase analysis and also to investigate the chemical composition of the obtained bioactive glass nanopowders. Transmision electron microscopy (TEM) and Scanning electron microscopy (SEM) were utilized to study the structure, morphology and particle size of synthesized bioactive glass nanopowders. In order to investigate the bioactivity, the prepared bioactive glasses were immersed in the simulated body fluid (SBF) solution at 37◦C for 30 days. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were utilized to recognize and confirm the apatite layer on the prepared bioactive glass nanopowders. TEM images showed that the prepared bioactive glasses had the particle sizes less than 100 nanometers. SEM, FTIR and XRD confirmed the formation of bone-like apatite layer formed on the bioactive glass nanopowders surface, confirming the bioactivity of synthesized bioactive glass nanopowders. It was concluded that the amount of apatite on the 45S bioactive glasse was greater in comparison with 49S and 58S bioactive glasses. It is notable that by optimizing the chemical composition, bioactive glass nanopowder could be used in applications such as repair of bone defects and bone replacement.
A. Rasooli, M. Divandari, H. R. Shahverdi, M. A. Boutorabi,
Volume 30, Issue 1 (6-2011)
Abstract

In this research, DTA and TGA curves of titanium hydride powder in air with the heating rates of 5, 10, 20, 25, 30ºC/min were drawn, and XRD patterns of titanium hydride powder during heating rate 10ºC/min were prepared. Results showed that hydrogen comes out of titanium hydride in air during seven stages. And, by increasing heating rate, the mechanism of hydrogen emission from titanium hydride is almost fixed. Upon computation of activation energy of these stages, it was revealed that the mechanism does change at different temperatures. According to DTA curve at 10ºC/min, at temperatures lower than 460ºC, the mechanism is controlled by internal diffusion, at temperatures between 460-650ºC, it is controlled by physicochemical process, and at temperatures higher than 650ºC, it is controlled by chemical reaction. By increasing heating rate, the mechanism is changed at higher temperatures.
S. Vaezifar, H. Faghihian, M. Kamali,
Volume 30, Issue 1 (6-2011)
Abstract

DP803, an industrial catalyst used in petrochemical industry for dehydrogenation of isobutane to isobutene, was characterized in the current study. The results showed that zeolite Y is a high performance catalyst. This catalyst was then synthesized using a platinum source (hexachloro platinic acid) and two different tin sources (tributyl tin chloride and SnCl2.2H2O) all on zeolites Y, and then the synthesized catalysts were used in the dehydrogenation of isobutane in a reactor designed for dehydrogenation reaction. XRF, XRD, TG/DTG, FT-IR, and SEM techniques were used for the characterization and determination of the composition of catalysts. The wet analysis of samples under different reaction conditions were investigated as well.
S.m.h. Mirbagheri, R. Tafteh, K. Sardashti,
Volume 30, Issue 1 (6-2011)
Abstract

In this paper, the effect of TiH2 and CaCO3 blowing agents was investigated on the structure and energy absorption of Al-7%Si-3%SiC composite metal foam by powder compact route. Composition of the foam was prepared from a mixture of Al, SiC and Si powders. Then, precursors were consolidated in H13 die mould by cold and uni-axial pressing at 110 MPa and at room temperature. The pressed precursors were extruded at 500oC, in a 12*24 mm2 cross-section. Then, the precursors were foamed in a 316L-stainless steel tube with diameter and height of 20 mm and 100 mm, respectively, in an electrical resistance furnace. Finally, for micro-structural investigation the samples were cut and polished, and a scanning electron microscope was used to observe the cell wall and surface topology. For calculation and comparison, energy absorption was used in an Instron Hydraulic test machine and the foam samples were compressed at the ramp velocity of 50 mm/minute. Results showed that foams with CaCO3 agent due to having high porosities are more stable than foams with TiH2 agent. Also, the energy absorption for foam with CaCO3 agent is more than foams with TiH2 agents. However, its drainage due to less thickness of wall porosities is better than the foam with CaCO3 agent.
M.h. Fathi, A. Hanifi, S.i. Roohani Esfahani,
Volume 30, Issue 2 (12-2011)
Abstract

Due to its biocompatibility, bioactivity and high durability properties, hydroxyapatite (HA) has a wide range of applications in medical cases such as bone defect treatment and bone tissue regeneration. Biological apatite as the most important integrity of the mineral part of hard tissues consists of tiny hydroxyapatite crystals in nanoregime. It seems that using the artificial hydroxyapatite with similar structure and chemical composition to biological apatite could increase its durability inside the natural hard tissues. The aim of the present work was the synthesis of nano structured hydroxyapatite via different routes, comparison of their characterization and enhancement of the bioactivity and bioresorbability of prepared hydroxyapatite by controlling its crystal size and chemical composition. Nano structured hydroxyapatite was prepared by mechanical activation and sol-gel routes. X-ray diffraction technique (XRD), Fourier transform infra red spectroscopy (FTIR) and transmission electron microscopy (TEM) were used to characterize the prepared hydroxyapatite powders. The synthesized powder was soaked in simulated body fluid (SBF) for various periods of time in order to evaluate its bioresorbability and bioactivity after immersion in SBF. Atomic absorption spectroscopy (AAS) was used to determine the dissolution rate of calcium ions in SBF media. Results showed that the mechanical activation prepared HA powder had nano scale structure with mean size of 29 nm and the sol gel prepared HA powder had nano scale structure with mean size of 25 nm. Ionic dissolution rate of prepared nano structured powders was higher than the conventional HA (with micron size) and were similar to biological apatite. It could be concluded that bioactivity behavior of hydroxyapatite powder is affected by its crystalline size. By using the nano structure HA powder with less than 50 nm crystalline size, the optimum bioactivity and bioresorbability would be achieved.
H. R. Salimijazi, T. Behzad, J. Mostaghimi,
Volume 31, Issue 1 (6-2012)
Abstract

Open pore metallic foams can be used for high temperature, high performance heat exchanger due to their high gas permeability and heat conductivity provided that skins properly attach to the foam’s struts on the surface. In the current study, a novel process was successfully developed to fill pores on the surface of the foam sheet in order to deposit skin on the foam specimens by thermal spraying. Nickel based superalloy (Inconel 625) skins were deposited on each side of a sheet of nickel metal foam with different pore densities of 10 and 20 pores per inch by high velocity oxy-fuel (HVOF), atmospheric plasma spraying (APS), and twin wire arc spraying to form a sandwich structure. The sandwich structure can be used in high temperature heat exchanger applications. The penetration of the coating materials into the foam struts can be controlled through the filling process before spraying. The microstructure of the skins and the adhesion at the interface between the nickel foam’s struts and skins were characterized. Results showed dense skins with good adhesion to the surfaces of the foam. The foam’s struts were imbedded into the coatings deposited by HVOF more deeply than the coatings deposited by APS and wire arc spraying. Skins deposited by HVOF and wire arc spraying showed higher bending strength than the skin deposited by APS due to lower porosity and oxide content in the coating.
M. Ashuri, F. Moztarzadeh, N. Nezafati, A. Ansari Hamedani, M. R. Tahriri,
Volume 31, Issue 1 (6-2012)
Abstract

In the present study, a bioceramic-based composite with remarkable mechanical properties and in vitro apatite forming ability was synthesized by sintering compacts made up of mixtures of hydroxyapatite (HA) and sol-gel derived bioactive glass (64SiO2-26CaO-5MgO-5ZnO) (based on mole %). HA was synthesized through co-precipitation method. The stabilization temperature of the bioactive glass was set to be 700 ºC according to simultaneous thermal analysis (STA). Laser Particle Size Analysis (LPSA) was used to compare the particle size distributions of the synthetic powders. HA matrix was mixed with different weight percentages of bioactive glass (5, 10, 15, 20, 25 and 30 wt. %) and compressed by 80 MPa pressure. After sintering the uniaxial compression test of the samples was done and the specimen with the highest compressive strength (20 wt. % bioactive glass) was selected to be immersed in the Simulated Body Fluid (SBF) for 3, 7 and 14 days. The results showed that the compressive strength of the sample decreased after keeping it in the SBF. Also, inductively coupled plasma analysis (ICP) was used to study the ion release behavior of the sample in the SBF. Finally, phase composition, microstructure and functional groups in the composite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infra-red spectroscopy (FTIR) techniques, respectively.
A. Elsagh,
Volume 31, Issue 2 (12-2012)
Abstract

In recent years, use of Sol-gel procedure for laboratory and industrial synthesis of Nanostructures and especially silica Nano-particles has increased. In this research, silica particles were synthesized by Sol-gel procedure and their physical properties were studied by means of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Thermal Gravimetric Analysis (TGA). Effect of structural modifiers on the morphology and diameter of Nano-particles was investigated. In addition, the reaction was carried out in the presence of ultrasonic waves in periods of 10, 30 and 60 minutes and the effect of these waves on different stages of reaction was studied by means of SEM. Finally, in this research, spherical particles of 50 to 80 nanometer sizes were synthesized and characterized. They can be very useful hosts for lanthanide complexes that can be used in drug delivery systems, radiotherapy, photoluminescence applications and manufacturing of special lasers. Also, different amounts of Lanthanum Nitrate hexahydrate were added to the mixture during the creation of Nano-particles. Then, Simulated Body Fluid (SBF) was produced for the study of ability of the Nanostructures in regulated delivery of drugs such as Lanthanides, and releasing of Lanthanides in 10 minute periods for 80 h was studied. Lanthanide concentration in SBF was also studied by means of Inductively Coupled Plasma (ICP). According to the results of ICP, loaded Lanthanide was not released from the silica network. Loaded Lanthanides in the mesopores can be used in radiation, especially in cases of liver cancer.
N. Miadi, H. Sarpoolaky, H. Ghassai,
Volume 32, Issue 1 (6-2013)
Abstract

In this study, mullite– irconia composite samples were prepared by reaction sintering of alumina and zircon powder via gel casting process. Gel casting is a new ceramic forming technique. This process is based on the casting of slurry, containing ceramic powder, dispersant and premix monomer solution. To achieve stabilized, high solid loading (80 wt%) and castable slurry, the rheological properties of slurry were optimized. The monomers polymerized the slurry to form gelled specimens. After gelation, the specimens were unmolded, then dried out under controlled condition. Burning out and sintering of the specimens was carried out in the range of 1400-1700°C. Apparent porosity and bulk density of the sintered samples were measured by soaking in water. Crystalline phase evolution and microstructure were determined by XRD and SEM techniques. Results showed that the reaction sintering and mullite formation was completed at 1700°C due to very slow diffusion of Al3+ ions within amorphous silica formed at the decomposition of zircon. The sintered samples at this temperature also showed the lowest apparent porosity (≈ 4%) and the highest bulk density (≈3.40 gr/cm-3).
G. Ahmadpour, A. Ghasemi, E. Paimozd,
Volume 32, Issue 2 (12-2013)
Abstract

The particles of ferrite Ni0.6-xCuxZn0.4Fe2O4, (0-0.5 in step with 0.1) were prepared by the sol-gel method. Sintering process of powders was carried out at 600, 800 and 1000 oC. The effect of the sintering temperature and chemical composition on the structural and magnetic properties of the Cu substituted NiZn ferrite was investigated. EDS analysis and X-ray diffraction patterns confirmed a well defined of single crystal phase with spinel structure. The thermal behavior process and particle size of samples were investigated by thermal analysis TG, DTA techniques and scanning electron microscope, respectively. VSM curves reveal that the sintering temperature and copper content affect saturation magnetization. M ssbauer spectra displays that the copper cations occupy the octahedral sites. With increasing of copper cations, the iron cations immigrate to tetrahedral site, consequently the saturation magnetization decrease.
F. Hosseinzadeh, H. Sarpoolaky,
Volume 32, Issue 2 (12-2013)
Abstract

Refractory carbides are becoming a group of promising material due to their unique properties, such as high hardness, high wear and corrosion resistance, high thermal conductivity, high melting point, high strength even at high temperatures, and a high degree of chemical stability. Among these carbides, titanium carbide (TiC) is one of the most important engineering material, based on its promising properties. This paper presents a novel approach to preparing ultrafine TiC by sol–gel processing. This novel process would minimize kinetic barriers because carbon (coming from sucrose) was homogeneous dispersed in the precursor of TiO2 by sol–gel process. As a result, the increased contact area between reactants should make the reaction to complete at lower temperatures.
M. Raz, F. Moztarzadeh, M.a. Shokrgozar, M. Ashuri, M. Tahriri,
Volume 32, Issue 2 (12-2013)
Abstract

In this project, we prepared biomimetic nanocomposite scaffolds from gelatin and chitosan and hydroxyapatite and subsequently the scaffolds were evaluated by common used bulk technique. For this purpose, the nanocomposite hydrogel/apatite bone tissue engineering scaffolds were fabricated using applied biomimetic method accompanied with freeze drying technique. The apatite was precipitated using double diffusion mechanism within gelatin hydrogel in similar pH and temperature to the human body. Chitosan initial percentage (20, 30 and 40%) was set as variables. Nanocomposites were soaked in glutaraldehyde solution in order to enhance mechanical properties and make them insoluble in water. Diffusion of calcium and phosphate from lateral hydrogel into the middle hydrogel caused formation of parallel white layer-formed precipitate. Analysis of precipitates formed within middle hydrogel for the samples, showed that detected materials are composed of carbonated hydroxyapatite and dicalcium phosphate dihydrate (DCPD, brushite). Also, mechanical behavior obtained for the scaffolds were comparable with spongy bone. With increasing chitosan in the composite scaffold, the water up-take was increased from 379 to 661%. Phase composition, microstructure and structural groups in the composite samples were also characterized by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infra-red (FTIR) analyses. Eventually, the obtained results showed that the composite contains 20% chitosan had appropriate properties for fabricating bone scaffold.
L. Akbarshahi, H. Sarpoolaki, H. Ghassai,
Volume 33, Issue 1 (7-2014)
Abstract

In this research according to unique properties of fused silica and Its numerous applications fused silica parts with 77% by weight solid loading formed by gel casting. Rheological behavior of the slurry and sintering conditions were optimized. Sample sintered at optimum conditions has bulk density of 1.71 g/cm3, open porosity of 18.13%, water absorption of 10.60%, linear shrinkage after firing of 3.5%, closed porosity of 1.09% and relative density of 78.80%. Its thermal expansion coefficient in range of room temperature to 1000 ◦C has been measured 0.4432×10-6 1/ . Results showed that With increasing temperature and time In addition to the increased vscous flow, Crystallization also extend. Finally sintered at high temperature and short time for an instance with the lowest overall high crystallinity and density, were found suitable
Z. Ansari, M. Alizadeh, A. Sadeghzadeh Attar,
Volume 33, Issue 2 (3-2015)
Abstract

In this study, mixed metal oxides Al2O3/MgO/TiO2 coatings with Al/Mg/Ti ratios of 5:1:3 and 2.5:3:4 were coated on AA1100 aluminum by sol-gel method. The surface morphology, phase analysis and the corrosion behavior of the Al2O3/MgO/TiO2 coatings were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and electrochemical impedance spectroscopy measurements (EIS) in 3.5 wt.% NaCl solution. The thermal behaviors, the bonds configuration, and functional groups of the coated samples were studied by thermo-gravimetric and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FTIR), respectively. The results demonstrated that heat treatment at 450 °C caused an increase in porosity and coating cracking, finally leading to the decrease of corrosion resistance. The best corrosion resistance was achieved for the sample with Al/Mg/Ti molar ratio of 5:1:3 without any heat treatment. The structure of this sample was amorphous, and heat treatment resulted in crystallization and decrease of the corrosion resistance.

Page 3 from 6     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb