Search published articles


Showing 776 results for Type of Study: Research

P. Verdi, S. M. Monirvaghefi, F. Ashrafizadeh,
Volume 40, Issue 3 (11-2021)
Abstract

Regarding to the low rate of conventional Ni-P electroless plating method that needs more time to make a coating on the substrate surface, a new technique called “substrate local heating” was introduced based on the temperature parameter modification and its advantages were expressed and compared to the conventional electroless plating technique (temperature=90°C, pH=4.7). In order to provide necessary equipment making this approach practicable, electrical resistance was used as the heating source, and air injection and cooling water circulation were employed to control the solution temperature near the substrate and in the bulk solution, respectively. Considering the heater power (1000 W), the substrate and bulk temperatures were about 190°C and 80°C, respectively. This novel method could enhance the plating rate up to 32 µm/h which was about 60% greater than that of the conventional method, 20 µm/h. Moreover, benefits such as local plating, reduction of production costs, and formation of functionally graded coatings (FGC) can be achieved.

E. Mohagheghpour, R. Gholamipour, M. Rajabi, M. Mojtahedzadeh Larijani,
Volume 40, Issue 3 (11-2021)
Abstract

In this study, the amorphous carbon thin films were deposited by ion beam sputtering deposition method on the glass and Ni–Cu alloy substrates. The structural evolution of amorphous carbon and its correlation with the kinetic energy of carbon atoms during the growth of thin film was investigated. The effect of substrate material, deposition temperature, and ion beam energy on the structural changes were examined. Raman spectroscopy indicated a structural transition from amorphous carbon to diamond-like amorphous carbon (DLC) due to an increase in deposition temperature up to 100°C and ion beam energy from 2 keV to 5 keV. The size of graphite crystallites with sp2 bonds (La) were smaller than 1 nm in the amorphous carbon layers deposited on Ni-Cu alloy. The results of residual stress calculation using X-ray diffractometer (XRD) analysis revealed a decreasing trend in the tensile residual stress values of the amorphous carbon thin films with increasing the ion beam energy.

F. Mofid Nakhae, M. Rajabi, H. R. Bakhsheshi-Rad,
Volume 40, Issue 3 (11-2021)
Abstract

Development of bioactive ceramic composite scaffold materials with enhanced mechanical strength has been a topic of great interest in bone tissue engineering. In the present study, β-tricalcium phosphate scaffolds with various amounts of bredigite and an interconnected pore network suitable for bone regeneration were fabricated by the space holder method. The effect of high concentrations of bredigite on the structure, mechanical properties (compressive strength), and in vitro bioactivity was investigated. According to the results, immersion in simulated body fluid (SBF) led to the apatite formation on the surface of the scaffold, but increasing the bredigite content caused the agglomeration of the bredigite phase at the grain boundaries and deteriorated the mechanical properties.


O. Ganji, S.a. Sajjadi, M. Mirjalili, Z.g. Yang,
Volume 40, Issue 4 (3-2022)
Abstract

Carbide coatings, due to their excellent anti-wear properties, are used to extend the life of molds exposed to abrasion forces. Various processes have been applied to produce carbide coatings. Thermo-reaction diffusion (TRD) using a molten salt bath could be considered as an economical method compared to other coating processes. In this study carbide-composite coatings using molten salt baths composed of oxides of carbide forming elements (chromium and vanadium) on SKD-11 and T10 tool steels at 1000 ℃ were formed. The results showed that the coatings included chromium carbide phases: CrC, Cr7C3, and Cr23C6 as well as vanadium carbide: VC, VC0.88, V6C5, V8C7, and a triple phase with the composition of Cr2C2V. The highest hardness (1890-2020 HV) and the lowest coefficient of friction (0.14) were achieved by the carbide coating of T10 steel with the second bath of vanadium oxide.
 
H. Fallah-Arani, N. Riahi-Noori, S. Baghshahi, A. Sedghi, F. Shahbaz Tehrani,
Volume 40, Issue 4 (3-2022)
Abstract

In this research, the effect of addition of silicon carbide (SiC) nanoparticles on the improvement of the structural, superconductivity, magnetic, and flux pinning properties of high-temperature superconductor Bi1.6Pb0.4Sr2Ca2Cu3O10+θ (Bi-2223) was investigated. The Bi-2223 ceramic superconductor was prepared using the sol-gel method, and silicon carbide nanoparticles were modified by Azobisisobutyronitrile (AIBN). The X-ray diffractometry, feild emission scanning electron microscopy, magnetic susceptibility, and hystersis loop measurements were performed to characterize the synthesized compounds. Based on the magnetic measurements, the superconductivity transition temperature dropped with an increase in the content of nanoparticles. Also, the maximum magnetization, hysteresis loop width, critical current density, and magnetic flux pinning force belonged to the sample with 0.4 wt.% SiC nanoparticles.

A. Mohammadi, B. Niroumand, A. Saboori,
Volume 40, Issue 4 (3-2022)
Abstract

Electron beam melting (EBM) is among the modern additive manufacturing processes whereby metal powders are selectively melted to produce very complicated components with superior mechanical properties. In this study, microstructure, hardness, and surface roughness of EBM fabricated Ti6Al4V samples were characterized. The results showed that the microstructure consisted of epitaxially-grown primary columnar β phase transformed to basketweave and Widmanstatten-type α phase during the subsequent rapid cooling. Martensitic needle-type α phase was also observed on the surfaces of the specimens. It was shown that higher parts of the sample had finer microstructures than the lower parts reaching to less than 340 nm in average thickness of the α layers due to distancing from the hot build platform rendering less opportunity for diffusional β → α+β transformation. The porosity content of the samples was lower than that of some other additive manufacturing processes. Vickers micro-hardness of the samples was measured to be around 337 HV which was higher than those reported for other additive manufacturing processes of the alloy.
F. Rafati, N. Johari, F. Zohari,
Volume 40, Issue 4 (3-2022)
Abstract

In the present study, PCL/ZnO nanocomposite scaffolds containing 0, 5, and 15 wt.% of ZnO nanoparticles were prepared via the salt leaching/solvent casting method. The influence of ZnO nanoparticles on the morphology of prepared PCL/ZnO scaffolds was investigated using SEM images. The compressive strength test evaluated the effect of scaffolds’ morphology on mechanical properties. The XRD technique confirmed the desired phases in the scaffold composition. The results showed that the compressive strength and structural integrity of the scaffolds increased by increasing ZnO nanoparticles content as the reinforcement. However, the compressive strength and structural integrity decreased by increasing the amount of ZnO nanoparticles up to more than 5 wt.%. In summary, PCL/ZnO nanocomposite scaffold containing 5 wt.% of ZnO nanoparticles revealed the highest strength, compressive modulus, and structural integrity.

M. H. Rezvani, M. Yeganeh, S. M. Lari Baghal,
Volume 41, Issue 1 (8-2022)
Abstract

In this study, the addition of organic methionine inhibitor (as an eco-friendly inhibitor) to 0.1 M sulfuric acid media on corrosion resistance of 316L austenitic stainless steel (fabricated by rolling method and three-dimensional (3D) printing method) was investigated. Open-circuit potential electrochemical test and impedance, and structural tests such as optical and electron microscopy and x-ray photoelectron spectroscopy were conducted. The results showed that the corrosion resistance in the presence of inhibitor was higher than the sample without inhibitor and the inhibitory efficiency of methionine was increased up to 64% and the resistance to surface transfer between metal oxide and electrolyte was improved up to 2.77 times. The addition of methionine reduced the surface roughness and accumulation of the surface cavities. The chemical and physical adsorption mechanism of the inhibitor (negatively charged side adsorption of the methionine molecule with positively charged anodic regions of the metal surface) occurred at all points on the surface of the sample with the inhibitor. Also, the amount of oxygen in the cavities was reduced and the distribution of sulfur was uniform. The thickness of the passivator oxide layers was calculated more than the sample without inhibition due to the addition of inhibitor.


M. Ghalambaz, M. Shamanian, A. M. Eslami, M. Abdollahi, E. Abdoulvand,
Volume 41, Issue 1 (8-2022)
Abstract

This research investigated the bonding properties of AISI 321 austenitic stainless steel from microstructural, mechanical, and corrosion points of view. To obtain the optimal parameters of pulsed current gas tungsten arc welding (PCGTAW), the Taguchi method was used. A cyclic potentiodynamic polarization test evaluated the corrosion resistance of the welded samples. The optimal conditions were achieved when the background current, the pulse current, the frequency, and the percentage of the pulse on time were 50 amps, 140 amps, 5 Hz, and 50, respectively. On the other hand, the analysis of variance showed that the percentage of pulse on time equal to 36 and the background current equal to 46 amperes were the most influential factors on the surface current density of the austenitic stainless steel 321 connection using the PCGTAW process. The mechanical properties were assessed using punch shear testing. In the optimal condition, the maximum shear force and strength were 3200 N and 612 MPa, respectively. The results showed that the most critical factor affecting the bonding properties of 321 steel was the heat input.
F. Dehghani Firoozabadi, A. Ramazani Saadatabadi, A. Asefnejad,
Volume 41, Issue 1 (8-2022)
Abstract

Today, many people need to use bone grafts and implants because of damage to bone tissue. Due to the stimulation of the immune system after implantation, infection at the operation site is very common, which causes swelling and pain in the operation area. The use of zinc oxide nanoparticles reduces infection at the operation site and reduces the patient's need for antibiotics. In the present study, the morphology of the scaffolds was investigated by field emission scanning electron microscope (FE-SEM). The toxicity of the samples was evaluated using MTT assay. The behavior of nanocomposites against Escherichia coli and Staphylococcus aureus was investigated by measuring the diameter of the growth inhibition zone. It was found that modification of scaffolds with nanoparticles caused a growth inhibition in bacterial culture medium. It was also observed that fibroblast cells on the surface of the modified scaffolds had longer survival than polymer scaffolds. This study showed that the addition of oxidizing nanoparticles improves the antibacterial properties of scaffolds and cell viability and reduces scaffold toxicity.

R. Zarei, E. Mohammadsharifi, M. R. Loghman, M. Ramazani, Kh. Zamani,
Volume 41, Issue 1 (8-2022)
Abstract

The present research has examined the effect of adding Si3N4 on the mechanical and structural properties of NiCrAlY alloy. The structural and mechanical properties of the manufactured samples were characterized by SEM, XRD,  micro-hardness evaluation and pin on disk wear test. Various concentrations of Si3N4 powder (1, 3, and 5 wt.%) were mixed with NiCrAlY powder using a mechanical ball mill. Next, the mixtures were sintered at 1100 °C using the spark plasma sintering (SPS) technique. The XRD patterns indicated that the samples were composed of two phases of solid solution γ-Ni(Cr) and intermetallic compounds β-NiAl. The results of micro-hardness measurements showed that adding 1% Si3N4 to NiCrAlY enhanced the hardness from 418 to 614 HV. However, with an increase in the Si3N4 content from 1 to 5 wt%, the hardness diminished from 614 to 543 HV, and by Adding Si3N4 to the NiCrAlY, its tribological properties were significantly improved.

F. Harati, S. M. Mousavizadeh, M. A. Jabbareh,
Volume 41, Issue 1 (8-2022)
Abstract

Cast AZ91 alloy is one of the most used magnesium alloys, which is sensitive to liquation in the fusion weld method,s and friction stir spot welding due to low eutectic temperature and the presence of the intermetallic compound in eutectic temperature. In this research, the liquation behavior of AZ91 alloy during friction stir spot welding was investigated. The process was carried out at two rotation speeds of 1000 and 2500 rpm and a dwell time of 1 second on the plate of AZ91 with a 10 mm thickness. Microstructural characterization was carried out using optical and scanning electron microscopes. The results showed that at low rotation speed (1000 rpm), mechanical grinding redistribution and dissolution of 𝛾-Mg17Al12 precipitates occurred. While at high rotation speed (2500 rpm), the predominant phenomenon was liquation. In this condition, the liquation initiated around the 𝛾 phase, and then the liquid re-solidified, leading to the typical eutectic structure instead of initial 𝛾 precipitates. Moreover, the liquation intensified by approaching the stirred zone. Also, the presence of liquid film along grain boundaries resulted in decreased grain boundary strength and liquation cracking.

A. Mehdikhani, H. Fallah-Arani, F. Dabir, A. Ghanbari,
Volume 41, Issue 2 (11-2022)
Abstract

 In this research, the effect of hydrogen peroxide (H2O2) and benzoyl peroxide (BPO) on the structural properties, porosity, active pores, and surface area of the MOF-5 (Zn4O(BDC)3) metal-organic framework was studied. For this purpose, the metal-organic framework was synthesized by direct mixing and the molar ratios of the precursors to the ligand were modified to minimize the stoichiometric calculation error as well as the washing process to improve the properties of the synthesized MOF-5. In order to characterize the synthesized compounds and to investigate the effect of peroxides and washing process on the properties of the samples, X-ray diffraction (XRD), fourier Transform infrared spectroscopy (FTIR), and thermogravimetric/Differential scanning calorimetry (TG-DSC) analysis were performed. Structure, pore volume (1.212 cm3/g), and specific surface area (2307 m2/g) were compared to the sample synthesized with H2O2. DM-P-03 was selected as the optimal sample and prepared for thermal stability. According to TG-DSC analysis, the remaining zinc compounds in the sample were checked and the thermal stability of MOF-5 structure was confirmed up to 470°C.
N. Mohammadi, B. Lotfi,
Volume 41, Issue 2 (11-2022)
Abstract

The purpose of this study was to improve the erosion behavior of Inconel 625 alloy by plasma transferred arc-deposited stellite6/B4C composite cladding. For this purpose, 5 wt.% of boron carbide was added to the stellite6 clad. Phase analysis and microstructure evaluation were conducted by Optical Microscope, Field Emission Scanning Electron Microscope (FESEM), and Energy-dispersive Spectroscopy (EDS). Solid particle erosion tests with silica particles at 30˚ and 90˚ impact angles were performed to study the erosion behavior. Eroded surfaces were observed by SEM. Investigations showed that the addition of boron carbide particles caused finer microstructure in composite cladding. Moreover, hardness increased with adding boron carbide. Maximum erosion resistance was achieved at 30˚ impact angle. The weight loss of composite cladding were 20 % and 33 % compared to those obtained in Inconel 625 substrate and stellite6 cladding, respectively. The weight loss of the claddings and substrate showed negligible difference at 90˚ impact angle. The dominant mechanism of erosion for composite cladding at 30˚ impact angle was suggested to be cutting and detachment of reinforcing particles. Crater formation was found the predominant mechanism of erosion at 90˚ impact angle.

B. Sharifian, G. H. Borhani, E. Mohammad Sharifi,
Volume 41, Issue 2 (11-2022)
Abstract

In this study, mechanically milled (MM) Al-24TiO2-20B2O3 powder in molten Al7075 matrix was used in order to fabricate in-situ TiB2 and Al2O3 reinforcements in Al7075 matrix. Differential thermal analysis (DTA) examination was adopted to find reaction temperature between milled Al, TiO2, and B2O3 powders. X-Ray Diffraction (XRD) patterns showed the existence of TiB2 and Al2O3 peaks (750 °C at Ar atmosphere) in MM powder. Scanning Electron Microscopy (SEM) results revealed the uniform distribution of TiO2 and B2O3 particles in the aluminum matrix. 6 wt.% MM powder was added to molten Al7075 at 750 °C. The molten Al7075/TiB2-Al2O3 composite was poured in copper mold. The stir casted composites were hot extruded at 465 °C with extrusion ratio of 6:1 and ram speed of 5 mm/s. The microstructures (optical microscopy and TEM) and mechanical properties (hardness and tensile testing) of samples were evaluated. TEM results showed that in-situ TiB2 nanoparticles were formed. The tensile strength of extruded Al7075/TiB2-Al2O3 composite was reached the value of 496 MPa. This result was around four times greater than that of the as cast Al7075 alloy.

A. Azimi-Fouladi , S.a. Hasanzadeh-Tabrizi,
Volume 41, Issue 2 (11-2022)
Abstract

Water pollution is one of the big problems of human societies, and the need to find new ways to remove these pollutants has been given much attention in recent years. One of the methods is the use of photocatalysts. In this research, TiO2 and TiO2-CdO nanoparticles were prepared by a sol-gel method as nano photocatalysts. The produced samples have been used to degrade methylene blue under UV light. To characterize the prepared samples, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), X-ray Energy Diffraction Spectroscopy (EDS), and Ultraviolet-Visible Spectroscopy (UV-Vis) were used. Microstructural results revealed nanoparticles with dimensions of 18 to 32 nm. XRD results showed that the main phase formed was the anatase. TiO2-4 wt.% CdO nanocomposite showed more photocatalytic activity compared to pure TiO2. Also, the effect of pH, irradiation time, and amount of powder on photocatalytic activity was investigated. The results showed that at pH=9, time of 75 min, and using 0.02 g TiO2-4 wt.% CdO photocatalyst, the maximum photocatalytic activity of about 92 % was obtained.
 

Page 39 from 39    
...
39
Next
Last
 

© 2025 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb