Search published articles


Showing 306 results for Co

Mrs M. Amoohadi, Mr M. Mozaffari, A. R. Gharaati, M. Rezazadeh,
Volume 37, Issue 1 (6-2018)
Abstract

In this study, iron powder (~45 μm) with the  minimum purity of 99% was insulated by the 1 to 4 wt% sodium silicate insulator (SiO2.3Na2O solution in 40 wt% water) and the 0.5 wt% zinc stearate. Insulated powders were pressed in a die with  a toroidal shape at the pressure of 320 MPa. The effects of insulator percentage and annealing temperature on the magnetic permeability, core loss tangent, and the total loss were investigated. The results indicated that the sodium silicate insulator could be suitable for insulating iron powders used in iron powder cores for high frequencies up to 1000 kHz. Also, this insulator could be stable against heat up to 450 °C.


S. Ghadiri, A. Hassanzadeh-Tabrizi,
Volume 37, Issue 1 (6-2018)
Abstract

In this study, the synthesis of nano-porous calcium magnesium silicate was performed and studied to improve drug properties and drug release. This synthesis was carried out by using the tetraethyl ortho silicate precursor (TEOS) and the Cetyltrimethyl ammonium bromide surfactant (CTAB) in a sol-gel alkaline environment; and the product was heat treated at 600° C and 800° C temperatures. The purpose of this study is to investigate the effect of the calcination temperature on the potential for ibuprofen release by the production produced compound. The product was studied using X-ray diffraction patterns (XRD), Nitrogen adsorption / desorption, Fourier-transform infrared spectroscopy (FTIR), ultraviolet spectroscopy (UV) and Transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The results of Nitrogen absorption-desorption assay showed a surface area of 42-140 m2 /g The drug release after 240 hours showed that the calcite sample had a lower release at 600 ° C, temperature that which was is due to the smaller size of the cavities and the more surface area, as compared tothan the other specimens. Also, calcium and magnesium elements increased  the loading capacity, and createcreating a suitable substrate for for the slower drug release. Overall, This this study showed that nano-porous magnesium silicate calcium has had  the ability to load and release the ibuprofen and can could be, therefore, used as a modern drug delivery system in the bone tissue engineering field.
 


A. Habibi, S.m. Mousavi Khoie, F. Mahboubi,
Volume 37, Issue 2 (9-2018)
Abstract

By using cathodic plasma electrolysis, a thin film of diamond-like carbon and carbyne was produced on the  nickel surface. The ethanolic solution at different concentrations of 15, 30 and 50 vol% was used as the  electrolyte; the  produced carbon film was studied by using glow discharge optical emission spectroscopy, scanning electron microscopy, optical profilometer,  and surface enhanced Raman scattering. The results proved the  coating formation of 40-60 nm thick carbon materials on the  nickel surface. The intensity ratio of carbyne band to the amorphous carbon structure band in the  Raman spectroscopy was decreased from 1.o4 to 0.32 by an increase in ethanol concentration; this was related to the  reduction at the carbyne and the  increase of the diamond-like carbon content in the produced film. Also, the study of the  samples surface showed an increase in the  surface roughness from 520 to 750 nm by enhancing the ethanol concentration.

M. Falsafein, F. Ashrafizadeh,
Volume 37, Issue 2 (9-2018)
Abstract

Nitride coatings with excellent hardness and wear resistance have been deposited by physical vapor deposition (PVD) in recent years. For most applications, the load bearing and adhesion of coatings are very important and can determine the life and performance of the final components. In this study, CrN/CrAlN nanostructured coatings with different thicknesses and numberes of layers were deposited on the stainless steel AISI 420 and hot-work tool steel by cathodic arc evaporation. Nanoindentation, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) were used for the structural characterization and estimation of stress in the coatings. Adhesion of coatings was evaluated by scratch adhesion and VDI 3198 Rockwell tests. The results revealed the high values of compressive residual stress in the physical vapor deposited coatings, in the range of  500 to 1800 MPa, with a detrimental effect on coating adhesion. Load bearing capacity was observed to be dependent on the thickness and adhesion of coating, reaching the maximum at an optimum thickness. Overall, the results proved that the type of steel substrate could have a significant influence on the coating adhesion.

M. Alizadeh, A. Cheshmpish,
Volume 37, Issue 2 (9-2018)
Abstract

In this research, Ni-Mo-Al2O3 composite coatings were electro-deposited on the mild carbon steel in a citrate bath containing micro- sized Al2O3 particles. Afterward, the effect of the particle concentration in the electrolyte bath (ranging from 0 g/L to 30 g/L) on the microstructure, microhardness, and corrosion performance was evaluated. To investigate the microstructural changes and the surface morphology of the coatings, as well as the particle distribution in the deposits, optical and scanning electron microscopy coupled with the energy dispersive X-ray spectroscopy was utilized. The corrosion behavior of the prepared coatings was investigated in a 3.5 wt. % NaCl solution. The results showed that the presence of the Al2O3 particles in the Ni-Mo coatings changed the  microstructure and also, increased the  microhardness and corrosion resistance of them. It was also found that the desirable structure of the protruding crystallite morphology with no detectable pores could  be achieved at the medium concentrations of reinforcement (e.g. 20 g/L). Further the optimum concentration of the particles in the electrolyte bath to attain the composite coating with the desirable microstructure and consequently, the desirable corrosion resistance was found to be 20 g/L.

S. F. Shams, M. Ebrahimian-Hosseinabadi,
Volume 37, Issue 2 (9-2018)
Abstract

The purpose of this paper was modeling and mechanical analysis of the biodegradable biphasic calcium phosphate/silk (BCP/Silk) laminated composite bone plate for fractured tibia healing; to this aim,ABAQUS 6.13 was employed for modeling and mechanical analysis. First, the tibia bone was considered based on the anthropometric measurements of an average person as a two-layer cylinder; the inner part was the bone marrow and the outer one was the cortical bone. Then, the bone plate and screws were designed according to the defined standards and the properties of new composite in the ABAQUS software. The mesh of bone plate and other equipments were selected to be tetragonal and cubic, respectivelly. After that, the bone plate was placed on the bone while the bone was bounded along the Y axis and the force of around 400 N was loaded. The results showed that the biocompatible and biodegradable composite bone plate had the elastic modulus of about 21 GPa, which was close to the bone modulus.

Sh. Tavakoli Dehaghi, S. Darvishi, Sh. Nemati, M. Kharaziha,
Volume 37, Issue 3 (12-2018)
Abstract

Abstract: With the advances in the development of biomaterials for tissue replacement, the attention of scientists has been focused on the improvement of clinical implant properties. In this regard, despite the appropriate properties of the stainless steel, the application of stainless steel as implants has been limited due to the weak corrosion resistivity. The purpose of this paper was preparation and characterization of hydrophobic polydimethylsiloxane (PDMS)-SiO2-CuO nanocomposite coating on the 316L stainless steel surface. The 316L stainless steel was coated by SiO2 nanoparticles (20 wt. %), CuO nanoparticles (0.5, 1 and 2 wt. %) and biocompatible PDMS. In this research, x-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to characterize the coating. Moreover, the roughness and water contact angle of the coatings consisting of various amounts of CuO nanopowder were estimated. Finally, the effects of various amounts of the CuO nanopowder on the corrosion resistivity of nanocomposite coatings were investigated. XRD patterns confirmed the presence of crystalline CuO nanoparticles on the substrate. Due to the non-crystalline nature of silica nanoparticles and the semi-crystalline PDMS polymer, no peak confirming the presence of these phases was detected on the XRD pattern of the nanocomposite coating. SEM images showed the formation of a lotus leaf-like layer on the surface of the nanocomposite coating containing 1 and 2 wt. % CuO. Moreover, water contact angle evolution revealed that while contact angle was 81 degree without CuO nanoparticles, it was enhanced to 146 degree in the presence of 1 wt. % CuO. Moreover, the corrosion study showed the nanocomposite containing 2 wt.% CuO had the best corrosion resistance, the corrosion current density of 2.1E-7 A.cm-2, and the corrosion potential of 0.22 V.

M. Tafreshi, S. R. Allahkaram, S. Mahdavi,
Volume 37, Issue 3 (12-2018)
Abstract

In this research, Zn-Ni and Zn-Ni/PTFE coatings were electrodeposited from sulfate-based electrolytes. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were used to investigate the  corrosion properties of the coatings. Hardness and tribological behavior of the coatings were examined by the Vickers microhardness testing machine and the  pin-on-disc method, respectively. Chemical composition and morphology of the as-deposited and worn surfaces of the coatings were studied by a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). According to the results,  the corrosion current density of the  Zn-Ni film was about 30% of that of the composite coating. Hardness of the alloy film was partially decreased by the  incorporation of Polytetrafluoroethylene (PTFE) particles. However, the wear loss and coefficient of friction of the  Zn-Ni/PTFE coating were, respectively, about 43% and 57% of those of the Zn-Ni film. Moreover, wear mechanism was changed from plastic deformation and adhesive wear to slight abrasion by  the co-deposition of PTFE particles.

G. Pishevarz, H. Erfan Niya, E. Zaminpayma,
Volume 37, Issue 3 (12-2018)
Abstract

Abstract: In this work, the amounts of the adsorption of conjugated polymers onto graphene/ graphene oxide were examined by reactive force-field molecular dynamics simulation. The polymers were poly(3-hexylthiophene) (P3HT) and poly(phenothiazine vinylene-polythiophene)(PTZV-PT). The length and width of the graphene sheet were 95.19 Å and 54.16 Å, respectively. The graphene oxide sheets with different oxidation percentages were considered. The molecular dynamics simulation results demonstrated a higher amount of adsorption onto graphene oxide sheets in comparison to graphene; furthermore, poly(phenothiazine vinylene-polythiophene) revealed a larger amount of adsorption in comparison with poly(3-hexylthiophene) in both functionalized groups of hydroxyl and epoxy. Also, some structural properties of polymers, such as radius of gyration of polymer and radial distribution function, were calculated at different reactive sites.

M. Haghshenas Gorgani, M. Mirkazemi, F. Golestanifard,
Volume 37, Issue 4 (3-2019)
Abstract

In this research, the rheological behavior and stability of suspensions containing Si3N4, Al2O3, Y2O3 and starch were investigated in order to use them in the starch consolidation casting of porous silicon nitride. Dolapix CE64 was used as the dispersant. Then, the effect of some parameters such as Si3N4 surface oxidation, dispersant content, solid loading and starch content on the viscosity and rheological behavior of Si3N4-starch slurry was determined. Surface oxidation of Si3N4 powder at 800°C for 2 hours reduced the viscosity of the slurry, effectively. The best dispersant content was 0.4 wt. %, relative to ceramic powders. Slurries containing 30 to 40 vol. % and 7.5 to 25 vol. % starch, relative to total solid loading, had the suitable viscosity and the sufficient stability for casting by the starch consolidation method.

M. Lashani Zand, B. Niroumand, A. Maleki,
Volume 37, Issue 4 (3-2019)
Abstract

Mechanical properties of the alloys are a strong function of the average silicon particles size and the secondary dendrite arm spacing (SDAS). Modified Hall-Petch equation expresses the effects of these two microstructural parameters on the yield strength and ultimate tensile strength of the Al-Si based alloys. These microstructural parameters depen on parameters such as chemical composition, cooling rate and melt treatment. In this study, the effect of cooling rate on the  equation constants of the alloy were determined. For this purpose, the alloy was poured at 750 °C in three different molds including a sand mold, a preheated steel mold, and a water cooled steel mold. The Thermal and microstructural analysis showed that the cooling rate in the metal mold was 15.7 times higher than that of the sand mold, which resulted in a decrease of the SDAS from 54 micrometers to 17 micrometers. It was also found that by reducing the SDAS from 45 micrometers to 17 micrometers, the yield strength and tensile strength were increased by 16.5% and 6.5%, respectively. The modified Hall-Petch equation constants and the microstructure-mechanical properties relationships were then established by the microstructural and tensile test studies.

M. Akbarzadeh, M. Zandrahimi, E. Moradpour,
Volume 37, Issue 4 (3-2019)
Abstract

Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants. In this study, MoS2-Cr composite coatings were deposited onto AISI 1045 steel substrates by direct-current magnetron sputtering. The MoS2/Cr ratio in the coatings was controlled by sputtering the composite targets. The coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and nano-indentation and nano-scratch techniques. The tribological behavior of the coatings was investigated using the pin-on-disc test at room temperature. The results showed that the thickness and the hardness of the coating were 6 µmand 850-1300 HV, respectively. The degree of the crystallization of the composite coatings was enhanced with increasing the Cr contents. The incorporation of Cr into MoSx coatings resulted in the considerable improvement of coating adhesion and hardness. The optimum doping level for MoS2-Cr coatings to show the best tribological propertie was 13 atomic percent. The main wear mechanisms of the coating were delamination, tribochemical and abrasive micro cracking

A. Razmjou, F. Noorisafa, N. Emami,
Volume 37, Issue 4 (3-2019)
Abstract

Polyurethane polymer plays an important role in health care, and it is widely used in medical devices and instruments. However, the low biocompatibility and biofilm formation on the surface can be regarded as a challenging issue. Engineering the wetting capability of the surface is an effective way to increase the biodegradability of polymer surfaces with sufficient bulk properties. In this study, the surface modification of polyurethane sheets by a thin layer of polyethylene glycol and trapping of titanium dioxide nanoparticles were carried out by means of physical and chemical changes on the surface to enhance the biocompatibility. The physicochemical properties of the modified surfaces were determined using fourier-transform infrared (FTIR) spectroscopy , scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and contact angle and free surface energy measurement. The biocompatibility of the modified levels was evaluated using the MTT toxicity test on cervical cancer cells (HeLA), bacterial adhesion, biofilm formation, and the protein absorption assay by the Bradford method. A thin, autoclave able and inexpensive thin layer with a solid and stable roughening structure was created covalently on the surface of the polyurethane plates for biological and medical applications. The results, therefore, showed that apart from antibacterial activity, the modified sample also had the ability to reduce the biofilm formation, such that the maximum biofilm attachment inhibition in the first 24 hours was 94% higher than that of the modified sample.

M. Hakimi, M. Safari,
Volume 38, Issue 1 (6-2019)
Abstract

In this study, the improvement of the magnetic properties of Co2FeSi Heusler compound was followed by the utilization of different experimental synthesizing procedures. Comparing the crystal structure showed that the milled samples had a higher crystalline order than the arc-melted ones. Annealing of the milled sample improved the crystalline order, resulting in the highest saturation magnetization (5/24 μB/F.u.). The difference in the saturation magnetization of the other samples was explained by the core-shell model. Comparison of the various coercivity mechanisms showed that the decrease in the size of crystallites played a key role in the higher value of the milled samples coercivity.

A. Sheikhali, M. Morakkabati, S. M. Abbasi,
Volume 38, Issue 1 (6-2019)
Abstract

In this paper, in order to study the flow behavior and elongation of as-cast ingots of SP-700 titanium alloy, hot tensile test was done in α/β dual phase and β single phase regions using strain rate of 0.1 s-1. Results showed that the hot tensile behavior of SP-700 in the α/β dual phase region (700-900 ºC) was different from the β single phase one (950-1100 ºC) due to the nature of alpha and beta phases and their crystallographic structure. This was since the number of slip systems and deformation mechanism in HCP structure were different from those in BCC structure. Beside, the intensive variation of elongation in microstructural studies showed that the dominant mechanism of hot tensile deformation of SP-700 alloy was dynamic recovery (DRV). Thus, serration of grain boundaries and occurrence of DRV were the reasons for the increase of elongation with the rise of temperature. However, beta grains growth and occurrence of grain boundary fracture made a slight decrease in elongation in the temperature range of 1000-1100 ºC.


 
F. Saeidpour, M. Zandrahimi, H. Ebrahimifar,
Volume 38, Issue 1 (6-2019)
Abstract

Crofer 22 APU ferritic stainless steel has been evaluated as one of the favorable materials for utilization in Solid oxide fule cell (SOFC) interconnects. However, there are difficulties in utilizing these metallic interconnects, including the quick  decrease of their electrical conductivity and evaporation of Cr species. To overcome the above problems, the application of protective coatings has been proposed. In this work, Co/Y2O3 composite coatings were deposited onto Crofer 22 APU stainless steels by direct current electrodeposition method. Oxidation and electrical properties of uncoated and coated steels were evaluated. Surface and cross-section of the bare and coated steels were characterized using scanning electron microscopy and X-ray diffraction techniques. Results showed that oxidation rate of the coated specimen was reduced by about 4 times, as compared to the uncoated one after 500 h isothermal oxidation in air at 800˚C. Formation of Co3O4 and MnCo2O4 spinel compositions improved electrical conductivity of the coated sample. After 500 h of isothermal oxidation at 800˚C, ASR value of the Co/Y2O3-coated and uncoated steels was 15.8 mΩ·cm2 and 25.9 mΩ·cm2 , respectively.

M. Zadali Mohammad Kotiyani, Khalil Ranjbar,
Volume 38, Issue 1 (6-2019)
Abstract

In this research, an in-situ hybrid composite reinforced by Al3Zr and Al3Ti aluminide particles was fabricated by friction stir processing (FSP). The base metal was in the form of a rolled Al 3003-H14 alloy sheet, and zirconium and titanium metal powders were used as the reinforcements. Six passes of FSP were applied. Tensile strength and hardness of the base metal, as well as FSPed samples before and after applying heat treatment, were determined. Microstructural examinations were performed using optical and scanning electron microcopy (SEM), and phase formation was identified by X-Ray diffraction. Microstructural examination revealed that by applying FSP, the prior large and elongated grains of the base metal were converted to the fine and equiaxed grains. It was also observed that chemical reactions occurred at the interface between the aluminum matrix and the metallic powders, forming in-situ aluminides of Al3Zr and Al3Ti. The post annealing heat treatment activated these solid state chemical reactions and more aluminides were formed. It was also found that the heat treated hybrid composite possessed the highest tensile strength and hardness values. The tensile strength in such samples reached 195 MPa, as compared to 110 MPa of the base metal.

M. Eshraghi, Z. Mosleh, M. Rahimi,
Volume 38, Issue 1 (6-2019)
Abstract

In this investigation, the structural and magnetic properties of Cr and Zn substituted Co ferrite with the general formula Co1-xZnxFe2-xCrxO4 (x= 0.1, 0.3, 0.5, 0.7) as prepared by sol- gel method were studied. The structural, morphological and magnetic properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM) and Vibrating sample magnetometer (VSM). XRD measurements along with the Rietveld refinement indicated that the prepared samples were single phase with the space group of Fd-3m. Results of SEM images also showed that the particles were in the nanosize range. Also, the magnetic properties of the samples indicated that the magnetization was first decreased, reaching the minimum value for x=0.1 sample; then it was increased. This behavior was related to the cation distribution at the tetrahedral and octahedral sites. Moreover, coercivity was significantly decreased with increasing the doping level due the decrease of magnetocrystalline anisotropy because of the nonmagnetic Zn ion substitution.

M. Ghasemian Malakshah, F. Ashrafizadeh, A. Eslami, F. Fadaeifard,
Volume 38, Issue 2 (9-2019)
Abstract

Since martensitic precipitation hardened 17-4pH stainless steel has been widely used in corrosive environments, evaluation of its corrosion fatigue behavior is important. In this research, after microstructural studies, mechanical, corrosion, fatigue and corrosion fatigue tests were performed on 17-4pH specimens. Fatigue and corrosion fatigue tests were carried out at the  stress ratio of -1 and the  stress frequency of 0.42 Hz (to increase the effect of corrosive solution), and corrosion fatigue tests were conducted in 3.5% NaCl solution, an  environment similar to corrosive sea water. Fatigue limit of 17-4pH stainless steel was 700 MPa in air and 415 MPa in corrosive environment. Comparing the S-N curves of this alloy at the optimal heat treatment cycle in two modes of fatigue and corrosion fatigue revealed the reduction of fatigue limit up to 40 % in the presence of corrosive environment. This reduction was due to the effect of observed corrosion pits on the surface and Damaged passive layer.

M. Barjesteh, K. Zangeneh Madar, S. M. Abbasi, K. Shirvani,
Volume 38, Issue 2 (9-2019)
Abstract

In this study, the effect of platinum-aluminide coating parameters on surface roughness of nickel-based superalloy Rene®80 was evaluated. For this purpose, different thicknesses of Pt-layer (2, 4, 6 and 8µm) were plated on the Samples. Then diffusion aluminide coating in two types, high tempeature-low activity and low temperature-high activity was performed. The results of structural investigations by scanning electron microscope and X-Ray diffraction indicated a three-zone structure of coating in all thicknesses of platinum layer, as well as in the two methods of aluminizing. Surface roughness of coatings was measured in three steps: 1-after Pt plating, 2-after Pt diffusion, and 3-after aluminizing and final aging. The results showed that the thickness of Pt and the final thickness of the coating   directly affected the surface roughness. The minimum surface roughness was created by high temperature low activity with 2µ of Pt-layer (2.6μm) and the maximum of surface roughness was obtained in low-temperature high activity with 8µ of the Pt-layer (8.8 μm).


Page 13 from 16     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb