Search published articles



S. Shirinparvar, R.s. Razavi, F. Davar, M.r. Loghman-Estarki, S. Ghorbani,
Volume 35, Issue 4 (2-2017)
Abstract

In this research, the nanopowders of lanthanum and neodymium co-doped yttria were synthesized by sol-gel combustion method. Citric acid and glycine were used as the gel maker and fuel respectively. The effect of molar ratio of citric acid to glycine on the grain size and morphology was evaluated. The optimized products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), UV–visible (UV–Vis), thermal gravimetric-differential thermal analysis (TG/DTA), and Fourier transform infrared spectrometer (FTIR). The optimized products which are synthesized with a molar ratio citric acid to glycine 1.06:1.06 have an average grain size of 30-40nm with spherical morphology, and without agglomeration. Also, their band gap is 3.29eV.


P. Mouchani, R. Sarraf Mamoori, N. Riahi Noori,
Volume 35, Issue 4 (2-2017)
Abstract

In this study, the parameters affecting the synthesis of silver nanoparticles were optimized by green chemical reduction method to make a conductive pattern. The raw materials used in this study, include silver nitrate as a source of
silver ions, polyvinylpyrrolidone as surface stabilizer, and glucose as the reducing agent. Effective parameters were investigated
by Taguchi statistical design, to determine the optimum conditions and achieve the smallest average particle size. Silver nanoparticles were characterized by X-ray diffraction and field emission scanning electron microscopy. The smallest particle size can be applied by solution adding rate of 0.1 ml/min, temperature 90 °C, weight ratio of glucose to silver nitrate 3 g/g and weight ratio of Polyvinylpyrrolidone to silver nitrate 3.2 g/g. According to.our expectation 20 nm silver nanoparticles were obtained in this condition. FE-SEM confirmed the above results and showed nanoparticles with a size of 25 nm. Finally, A conductive pattern was printed on a glass substrate with synthesized powder. The electrical resistance of the printed pattern was 0.088× 10 -4 Ω.cm.


A. Hasani, M. Baniadam, M. Maghrebi,
Volume 35, Issue 4 (2-2017)
Abstract

The electrochemical exfoliation of graphite via intercalation is one of the attractive methods to obtain graphene. However, presence of course graphite particles in product is the drawback of this method. In this research, the effect of adding cetyl trimethyl ammonium chloride (CTAC), on the amount of exfoliated graphene and functional groups was studied. Transmission electron microscopy, weighing, UV-vis spectroscopy and electrical conductivity were used for characterization of the products. According to results, presence of this surfactant decreases the erosion, while it increases the exfoliation of graphene flakes. However, after critical micelle concentration (CMC) of the surfactant, exfoliated weight decreased.


S. Pourmohamadi, M. Atapour, F. Ashrafizadeh,
Volume 35, Issue 4 (2-2017)
Abstract

In this study, a Cr-modified NiAl coating was fabricated by weld cladding technique using Gas- Tungsten Arc Welding (GTAW) process on 310 steel. Chemical composition and microstructure of the coating was studied by X-Ray Diffraction (XRD), optical microscopy and scanning electron microscopy equipped with an Energy Dispersive Spectroscopy (EDS). The wear behavior of the coated steel was examined through pin-on-disc tests at ambient temperature and 400 °C. The results showed that the hardness of coated steel increased remarkably due to the formation of Cr-modified NiAl on the surface. Furthermore, the wear experiments showed that the presence of Cr-modified NiAl coating caused significant improvement in wear resistance of cladding 310 steel at both ambient temperature and 400 °C. These results were discussed based on the wear mechanism obtained from examination of the worn surfaces using SEM.


M. Golestanipour, A. Babakhani, S.m. Zebarjad,
Volume 35, Issue 4 (2-2017)
Abstract

In this study, aluminium composite foams reinforced by different volume fractions of SiC particles as reinforcement and stabilizing agent were fabricated with the direct foaming route of melt using different contents of CaCO3 as foaming agent. The density of produced foams were measured to be from 0.38 to 0.68 g/cm3. The microstructural features and compressive properties of the AA356/SiCp composite foams were investigated. The relation between plateau stress, density and, weight percentage of CaCO3 and SiCp volume fraction with a given particle size was also investigated. The results showed that compressive stress-strain curves of the products were not smooth and exhibit some serrations. Also, it was shown that in the same density of composite foams, the plateau stress of the composite foams increases with increasing volume fraction of SiC particles and decreasing weight percentage of CaCO3.


F. Mirarabshahi, A. Mashreghi, M. Kalantar, M. Mosalaei,
Volume 35, Issue 4 (2-2017)
Abstract

In this study, fabrication of an in-situ composite through aluminothermic combustion synthesis in An Al–V2O5-NiO system was investigated. Therefore, Al, V2O5 and NiO powders with stoichiometric ratio of 11:1:1, respectively, were milled for an  hour and finally the mixtures were compressed. In order to investigate the temperatures of phase transformations, Differential Thermal Analysis (DTA) was utilized. Heat treatment was applied on the raw samples according to their peak temperatures treated in DTA. X Ray Diffraction (XRD) analysis for the samples shows formation of phases such as Al3V and Al3Ni2 at different sintering temperatures. Microstructure and phase analysis showed that during sintering of this sample, Al3V phase was not formed below 700 °C, at 880 °C Al3Ni2 it was formed and after 950 °C, it was transformed to Al4Ni3 phase. In addition, after 950°C, Al3V transformed into Al23V4 phase. Analysis of samples density and hardness showed that, due to increase of volume fraction percentages of reinforcing phase, these two parameters increase as well.


M. Hakimi, P. Kameli, B. Aslibeiki, A. Faqeeh,
Volume 35, Issue 4 (2-2017)
Abstract

In this work, cobalt ferrite nanocrystallites were synthesized by air annealing of milled Co-Fe compound. Effect of annealing temperature on phase formation of cobalt ferrite and structural and magnetic properties of the product was studied. Analysis of annealed sample in 450 oC showed that around 46 weight percent of the specimen was changed to Co2FeO4. This value increased to 95 and 90% for 800 oC and 900 oC annealed samples respectively. Reduction of saturation magnetization under annealing was related to transformation of Co-Fe to cobalt ferrite. Increasing the value of saturation magnetization in 900 oC annealed sample compared to 800 oC one was attributed to decreased surface to volume ratio and crystallite size. The main reason of occurrence of maximum coercivity in 800  oC annealed sample was its low crystallite size.


B. Khorrami Mokhori, A. Shafyei,
Volume 35, Issue 4 (2-2017)
Abstract

In this research titanium nitride (TiN) films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C). Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C) and low (25 °C) temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers). Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.


B. Avishan,
Volume 35, Issue 4 (2-2017)
Abstract

Presence of nanoscale bainitic ferrites and high carbon retained austenites that are stable at ambient temperature within the microstructures of super strong bainitic steels makes it possible to achieve exceptional strengths and ductility properties in these groups of nanostructured steels. This article aims to study the effect of the dislocation density variations during tensile testing in ambient temperature on deformation behavior of nanostructured low temperature bainitic steels. Results indicate that dislocation absorption from bainitic ferrite subunits by surrounding retained austenite reduces the work hardening and therefore increases the formability of bainitic ferrite during deformation, which in turn results in a suitable combination of strength and ductility.


Seyed M. Ahl Sarmadi, M. Shamanian, H. Edris, M. Atapoor, A. Behjat, M. Mohtadi Bonab, J. Szpunar,
Volume 36, Issue 1 (6-2017)
Abstract

Super duplex stainless steel is a kind of duplex stainless steel that has pitting resistant equivalent number over than 40. Unified Numbering System (UNS) S32750 is a common super duplex stainless stee, that is mostly applied in oil and gas refinery industries, because of its proper corrosion-resistant properties . Therefore, joining of these steels by welding is very important, but the greatest problem in this regard is the corrosion and decrease in mechanical properties after welding.. In this research, UNS S32750has been joined by friction stir welding method. The tool being used in this research was a WC with 16mm shoulder diameter, 5 mm pin diameter, and 1.9 mm height. X-ray diffraction showed that harmful phases, such as sigma or chi have not been formed. Microstructure study indicated that grain size in the stir zone has decreased. Vickers Hardness Test Method has been applied on welded samples. Moderate microhardness of base metal was 285 Vickers but, the microhardness increased in the stir zone to 360 Vickers, because of decreasing the grain size. The cyclic polarization determined that potential and corrosion current of joint metal by friction stir welding method was similar to base metal. Also, it was revealed that ferrite percentage in the stir zone doesn't decrease very much because the friction stir welding heat input is very low and the colding rate is very high.
 


M. Poorkabirian, H. Mostaan, M. Rafiei,
Volume 36, Issue 2 (9-2017)
Abstract

In this research, dissimilar welding between 4130 low alloy steel and austenitic stainless steel 316L has been investigated using Gas Tungsten Arc Welding (GTAW). Two types of filler metals, including ERNiCr-3 and ER309L, were used for this purpose. Moreover, the joint microstructures including the weld metals, heat affected zones and interfaces were characterized by optical and Scanning Electron Microscopy (SEM). The mechanical behavior of the joint was tested by impact and tension tests. Observations by SEM showed that in impact test, the fracture is soft. In the tensile test, the welded sample by ER309L filler metal was fractured from 316L base metal, but welded specimen with ERNiCr-3 was fractured from welded zone. Also, the results showed a dendritic structure in the nickel-based weld metal. No crack was found in the cellular-dendritic microstructure of ER309L weld metal due to the existance of delta ferrite between them.
 


M.r. Khanzadeh Gharah Shiran, H. Bakhtiari, M. Mohammad Javadi,
Volume 36, Issue 3 (11-2017)
Abstract

In this research, the effect of standoff distance and explosive material thickness on metallurgical features of explosive welding connection of copper to 304 stainless steel has been investigated. Experimental analysis were performed using optical microscopy, scanning electron microscopy, microhardness test and tensile shear strength test. The results indicated that due to severe plastic deformation in welding, both grain elongation and refinement occurred near the connection. Also, increasing of welding parameters led to an increase in the locally melted zones. The results showed that chemical composition of the melted zone consisted of elements of both flyer and base plates. By decreasing the explosive material thickness and standoff distance, the hardness of copper interface zone decreased from 103.4 HV to 99.8 HV. Moreover, increasing the temperature in stainless steel connection led to decreased hardness. As such, the maximum tensile shear strength of 244 MPa was observed  in the sample with 79 mm explosive thickness and 3 mm standoff and the minimum tensile shear strength of about 208 MPa in the sample with 46 mm explosive thickness and 3 mm standoff. By decreasing explosive thickness and standoff, the bond strength decreased, too.
 


M. R. Pakmanesh, M. Shamanian, S. Asghari,
Volume 36, Issue 4 (3-2018)
Abstract

In the present study, the optimization of pulsed Nd:YAG laser welding parameters was done on a lap-joint of a 316L stainless steel foil in order to predict the weld geometry through response surface methodology. For this purpose, the effects of laser power, pulse duration, and frequency were investigated. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to evaluate the effect of welding parameters on weld width. The results showed that the weld width at the upper, middle and lower surfaces of weld cross section increases by increasing pulse durationand laser power; however, the effects of these parameters on the mentioned levels are different. The effect of pulse duration in the models of weld upper, middle and lower widths was calculated as 76, 73 and 68%, respectively. Moreover, the effect of power on theses widths was determined as 18, 24 and 28%, respectively. Finally, by superimposing these models, optimum conditions were obtained to attain a full penetration weld and the weld with no defects.

M. Soltani Samani, A. Bahrami, F. Karimzadeh,
Volume 38, Issue 4 (1-2020)
Abstract

In this study, joining of Ni3Al intermetallic compounds using the transient liquid phase (TLP) process with Cu interlayer was investigated. The binding process was carried out in a vacuum furnace at a temperature of 1050 °C for different times of 30, 60, 90 and 120 minutes. The effect of time variation on microstructure and mechanical properties of the joint zone was investigated. The EDS analysis results of the joints proved formation of the athermally solidified zone (ASZ), isothermally solidified zone (ISZ) and diffusion affected zone (DAZ) at different times. After 90 minutes, brittle eutectic phases still exist in the joint line. However, by increasing the process time to 120 minutes, a copper-rich solid solution was formed in the joint line. Maximum hardness was attained in DAZ region and due to formation of more brittle compounds. By increasing the process time to 90 min, the hardness in the joint center-line increased. After 120 min, the hardness in the joint center-line decreased to about 224 HV. Maximum shear strength was achieved to be about 60 MPa at a process time of 30 minutes and due to formation of Ni-rich matrix at the joint. With increasing time to 90 min, the shear strength decreased to about 34 MPa. After 120 minutes and due to formation of copper-rich solid solution as well as disappearance of eutectic compounds, shear strength again increased to about 44 MPa. Investigation of fracture surfaces showed that until 90 minutes, fracture mode was mainly brittle whereas by increasing time to 120 minutes, a more ductile fracture occurred.

M. Jafari, M. Rafiei, H. Mostaan,
Volume 39, Issue 2 (8-2020)
Abstract

In this research, the effect of temperature and time on the properties of AISI420/SAF2507 dissimilar joint produced by transient liquid phase bonding process was investigated. A BNi-2 interlayer with 25 μm thickness was inserted between two dissimilar steel samples. The bonding process was performed at 1050 oC and 1100 oC for different bonding times. The microstructures of the joints were studied using optical microscope, scanning electron microscope and energy dispersive X-ray spectroscopy. Microhardness and tensile shear strength of bonded samples were investigated. Isothermal solidification was completed for the joints bonded at 1050 oC and 1100 oC for 45 min and 30 min, respectively. ASZ and ISZ areas of the bonding zone at the bonding temperature of 1050 oC indicated the highest (520 HV) and the lowest (300 HV) microhardness values, respectively. Sample bonded at 1050 oC for 1 min indicated the lowest tensile strength (196 MPa) and sample bonded at 1100 oC for 60 min indicated the highest tensile strength (517 MPa).

S. Asghari, A. M. Eslami, A. Taheri Zadeh, N. Saeidi,
Volume 39, Issue 3 (12-2020)
Abstract

In this study, the effect of welding heat input on microstructure and mechanical properties of dissimilar joints of API-X42 and API-B pipeline steels was investigated. Evaluation of the microstructures showed that increasing the welding heat input decreased acicular ferrite in weld metal microstructure, while amount of Widmanstatten ferrite, polygonal ferrite and grain boundary ferrite increased. Also, results of microhardness test showed that by increasing the heat input, hardness of weld metal and the heat affected zone decreased. Tensile test results showed that as the heat input increased, fracture transferred from base metal of API-B to the heat affected zone. Impact test results also showed that increasing the welding heat input could sharply drop the impact energy of the heat affected zone for both base metals due to extensive grain growth.

S. Arjmand, M. Tavoosi,
Volume 39, Issue 3 (12-2020)
Abstract

The present work aims to modify surface properties of pure Ti by development of Ti-Al-N intermetallic composite coatings. In this regard, tungsten inert gas (TIG) cladding process was carried out using Al 1100 as filler rod with Ar and Ar+N2 as shielding gases. Phase and structure of the samples were investigated by X-ray diffraction (XRD) technique, optical microscopy (OM) and scanning electron microscopy (SEM). Hardness values and corrosion behavior of the obtained coatings were also compared using Vickers microhardness tester and potentiostat, respectively. The results showed that composite structure containing Al3Ti, Ti3Al2N2 and Ti3Al intermetallic compounds could be formed on the surface of pure Ti. Amounts of brittle phases and welding defects at the titanium-coating interface were least by welding under pure Ar shielding. Despite the increasing amount of structural defects such as porosity and non-uniformity under Ar+N2 shielding, the prepared coatings had higher hardness (more than 100 HV) and corrosion resistance (more than twice) compared with those obtained under Ar shielding.
 
S. Arjmand, G. H. Akbari, G. R. Khayati,
Volume 39, Issue 4 (2-2021)
Abstract

The purpose of the present work is to investigate the influence of the number of weld-passes on microstructure, hardness and residual stresses of composite coatings composed of Ti-Al-Si intermetallic compounds. In this regard, surface coating of pure Ti was carried out using one and two passes of tungsten inert gas (TIG) welding with an Al filler alloy (grade 4043). Phase and structural evaluations of the coatings were investigated by X-ray diffraction, optical and scanning electron microscopies. microhardness and residual stress values of the coatings were measured using ASTM E384-HV device and the Sin2ψ method, respectively. The results showed that as the number of welding passes increased or the dilution ratio decreased, the volume fraction of Ti5Si3-Al3Ti intermetallic phases within the fusion zone increased and the volume fraction of martensite phase in the heat affected zone decreased. As a result, the average hardness value of the coating increased to be about 130 % compared to that of the pure Ti substrate. The tensile residual stresses at the center line of fusion zone were 165 ± 30 and 210 ± 35 MPa for the coatings prepared in one and two welding passes, respectively.

R. Moradi, M. Roshanaee, H. Mostaan, F. Nematzadeh, M. Safari,
Volume 40, Issue 1 (5-2021)
Abstract

In this research, microstructure and mechanical properties of laser welded joints between 2304 duplex stainless steel and Inconel 718 nickel-based super alloy were investigated. Microstructural evolution in the various areas of welded joints and also the effect of welding parameters on the mechanical properties of dissimilar joints were studied. Response surface methodology based on the central composite design was used in order to find the optimum welding parameters. Effective parameters of the welding process including laser power, travel speed and defocusing distance were set in the range of 1000 to 1900 W, 1 to 5 mm/s and -1 to 1 mm, respectively. Uniaxial tensile test was used to evaluate the fracture force of weld joints. The microstructural observations and phase evolutions were studied using optical microscope. It was found that the fracture force of the weld joints firstly increased by travel speed and defocusing distance and then decreased by further increase. The maximum fracture force was obtained when laser power, travel speed and defocusing distance were 1900 W, 3 mm/s and 0 mm, respectively. The center line of weld metal was mainly consisted of equiaxed grains where, columnar grains were formed in the fusion line. The obtained results from the hardness measurement showed that the hardness of Inconel 718 was decreased due to dissolution of TiC and NbC particles. 

M. Khosravi , M. Mansouri, A. Gholami, Y. Yaghoubinezhad,
Volume 40, Issue 1 (5-2021)
Abstract

In this research, the effect of graphene oxide (GO) and reduced graphene oxide (RGO) nanosheets on the mechanical and microstructural properties of AISI 304 stainless steel welded joints produced by the flux-cored arc welding (FCAW) method was investigated. Light microscope, field emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), Raman spectroscopy, and tensile strength test were used to characterize the samples. GO was synthesized by modified Hummers’ method and reduced by hydrazine. Accordingly, the pastes of GO and RGO in different concentrations of 1, 3, and 10 mg/ml were applied in the groove. The results demonstrated that increasing the RGO concentration up to 10 mg/ml improves the tensile strength and hardness values of welded joints up to 23% and 43%, respectively. It seems that RGO nanosheets have a significant effect on the mechanical properties of the welded joints by pinning of dislocations.


Page 1 from 2    
First
Previous
1
 

© 2025 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb