Search published articles


Showing 5 results for Aghaei

S. Mirzaei, M. Saghaein - Nejad, V. Tahani and M. Moallem,
Volume 20, Issue 2 (4-2001)
Abstract

This paper introduces a novel passive suspension system for ground vehicles. This system is based on a flexible Electromagnetic Shock Absorber (EMSA). In the proposed system, efforts are made to a) select a high damping coefficient usable in a car b) determine Physical dimensions and geometry not much different from those of the mechanical shock absorbers and c) seletct EMSA weight and volume low enough for the core not to be saturated. A model is designed and developed followed by determining the dynamic equations for the model. The results from the simulation in a quarter car model are then compared with those from passive and active suspension systems. Keywords: Active Suspension Systems, Electromagnetic damper, Finite Element method
V. Tahani, S. M. Saghaeian Nezhad and G. R. Arab,
Volume 21, Issue 1 (7-2002)
Abstract

Because of extreme local saturation at pole tips of excited phase and uncircular shape of rotor and stator, a Swithed Reluctance Motor (SRM) does not have a simple and accurate mathematical model. Therefore, the output control of this motor requires a robust controller which is not based on an accurate model of the process. Fuzzy controllers, to some extent, will satisfy these requirements. Teta-on and teta-off are controller outputs. The output of teta-off controller is a Variable Structure Controller (VSC) which contains two parts: coarse controller which is used when the speed error is large and its output causes large changes in teta-on angle. This part of the controller is similar to a fuzzy PI controller. The other part of the controller is a fine controller and is used when the speed error is low. The fine controller increases the speed of response and reduces the speed error to zero. This part is similar to a fuzzy I or PI controller. Finally, experimental results of no-load and underload speed controls are demonstrated. The fuzzy controller robustness to measurement noise and parameter uncertainty is also studied. Keywords: Fuzzy Controller. SRM Variable Structure Controller
Gh.r. Aghaei , M.r. Izadpanah, M. Eftekhari ,
Volume 32, Issue 2 (Dec 2013)
Abstract

Mechanical alloying technique is used for production of nanostructured soft magnetic alloys. In this work the back propagation (BP) artificial neural adopted to model the effect of various mechanical alloying parameters i.e. milling time and chemical composition, on the properties of Fe-Ni powders. Lattice parameter, grain size, lattice strain, coersivity and saturation intrinsic flux density are considered as the output of five BP neural networks. The results obtained show the efficiency of designed networks for the prediction of the properties of Fe-Ni powders.
M. Hajfarajzadeh, A. Eshaghi, A. Aghaei,
Volume 37, Issue 4 (Journal of Advanced Materials-winter 2019)
Abstract

A TEOS-GPTMS nano-hybrid thin film was deposited on the polymethyl methacrylate (PMMA) substrate by a sol-gel dip coating method. Morphology, roughness and surface chemical bonding of the thin films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy(FE-SEM), atomic force microscopy, and Fourier transform infrared spectroscopy methods, respectively. UV-vis spectrophotometer was used to measure the transmittance spectra of the samples. Also, the adhesion and hardness of the coatings were investigated using pencil hardness the adhesion tape test and the test, respectively. XRD results proved that the thin film had an amorphous structure. Also, FE-SEM images indicated that addition of GPTMS to the TEOS yielded a crack-free thin film. Based on the UV-vis spectroscopy results, the transmittance of the polymer substrate in the visible region was increased by the deposition of the nano-hybrid coating. Moreover, the hardness of the PMMA substrate was increased from 3H to 6H by the deposition of the nano-hybrid thin film.  Also, tape test confirmed the  high adhesion of the nano-hybrid thin film on the PMMA substrate. Consequently, the transparent organic-inorganic GPTMS-TEOS  hybrid coating can be used as a scratch resistant coating on the PMMA substrate.

M. Maniei, A. Eshaghi, A. Aghaei,
Volume 38, Issue 2 (Journal of Advanced Materials-Summer 2019)
Abstract

In this research, MgF2-2%SiO2/MgF2 thin films were applied on a glass substrate. At first, MgF2 thin films with the optical thickness were deposited on the glass slide substrates. Then, MgF2-2%SiO2 thin films were deposited on the glass coated with MgF2 thin films. Finally, the nanocomposite thin films were surface treated by the PFTS solution. Characterization of the thin film was done by X-Ray defractometry (XRD), attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR), UV-Vis spectroscopy, and atomic force microscopy (AFM) techniques. Also, the hydrophobic properties of the samples were investigated by measuring the contact angle of the water. The results showed that the deposition of the six layer MgF2 thin films on the two sides of the glass substrate increased the transmission up to 96.4%. For the glass deposited by MgF2-2%SiO2 nanocomposite thin films, transmission was reduced to 94.4%,   with its transmission being higher than the pure glass. Also, the water contact angle (WCA) analysis determined that the contact angle of the water droplet on the MgF2-2%SiO2 nanocomposite thin film coated glass was decreased. On the other hand, the contact angle of the water droplet on the MgF2-2%SiO2 nanocomposite thin film coated glass after modification with the PFTS solution was increased up to 119o. So, MgF2-2%SiO2 nanocomposite thin films could be used as an antireflective and self-cleaning coating on the surface of the optical devices.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb