Search published articles


Showing 2 results for H.R. Salehi

H.r. Salehi, S.m.r. Khalili,
Volume 30, Issue 2 (Dec 2011)
Abstract

In the present work, thermal and mechanical behaviors of phenolic resin are investigated. This polymer can be used as a matrix for carbon-carbon composites. To find out the best heating process, five different cycles are used for curing the polymer and flexural strength of the specimens are obtained. The cycle with maximum strength is used for the next steps. Then, the oxidation behavior of specimens is studied at different temperatures. The results show that the polymer can withstand temperature about 350°C without significant weight changes. Carbonization of phenolic resin is studied by four different cycles at 1100°C. Oxidation of carbon obtained from carbonization cycle is analyzed extensively and shows no weight change until 550°C. The microstructure of specimens is also investigated by SEM. By additining SiC micro particles to phenolic polymer, the strength change is achieved.
H.r. Salehi, S. Salami, M. Atarian, O. Ozhdelnia,
Volume 32, Issue 1 (Jun 2013)
Abstract

Carbon fiber composite is one of the most important materials in aerospace engineering applications. For fabrication of this composite, optimum polymerization and carbonization cycles of phenolic resin were obtained [1]. Then, carbon/phenolic composite was fabricated by mixing different weight percentages of T700 carbon fiber with phenolic resin, and the flexural strength of specimens was examined.The samples were pyrolyzed at 1100°C to form high temperature phenolic matrix. Because of high porosity of samples, the composite was impregnated to increase the density and reduce porosity. The maximum flexural strength of samples was obtained with 40 wt. % of fiber. With addition of TiO2 and ZrO2 nanoparticles to carbon/phenolic composite, thermal and mechanical improvement was measured. The samples were examined by ablation test and microstructures of composites were analyzed by SEM.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb