Search published articles


Showing 9 results for Karimi

H. Khaleghi, M. Mirzaee and S. M. H. Karimian,
Volume 22, Issue 1 (7-2003)
Abstract

In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mach number near to one, where similar upwind methods normally fail. Some two dimensional/ axisymmetric test cases have been computed to validate the present method. These cases are: Hypersonic flow over a 15-degree compression ramp, two-dimensional supersonic flow over a flat plate and axisymmetric supersonic flow over a tangent ogive. The results are compared with the results of other numerical schemes, such as Beam and Warming scheme Keywords: Upwind, Navier stokes, Hypersonic
M. Motamedi, F. Nateghi-Elahi, M. Ziaeefar, and M. Karimi,
Volume 25, Issue 1 (7-2006)
Abstract

Energy absorber systems like metallic dampers for controlling the structural vibrations due to earthquake have witnessed considerable development in the past few decades. Also there are some studies on the energy absorption of thin-walled tubes due to impact load. Thin-walled tubes have a large deformation capacity and are suitable energy absorbers in the structure during an earthquake provided that a suitable inelastic buckling mode obtains. This paper deals with the study of energy dissipation in accordion thin-walled tubes and their behavior due to axial cyclic loads. For this purpose, experimental and analytical studies have been performed. Experimental studies were conducted on specimens available in the market by dynamic tension and compression actuator. Analytical studies are based on finite element methods and nonlinear inelastic dynamic analysis. These studies are focused on the effects of mechanical and geometrical parameters of these tubes like shape, thickness, diameter, length and material type of tube on the amount of energy dissipation and axial stiffness. The results show that accordion thin-walled tubes exhibit satisfactory energy absorption behavior and that proper selection of the parameters yields the optimum design of this metallic damper.
A. Zare, M. Hadi, A. Ghasemi, H. Karimi , M. Sadeghi,
Volume 34, Issue 2 (Journal of Advanced Materials- Summer 2015)
Abstract

The aim of this investigation was to produce Ti47Al48Mn5 intermetallic compounds with different microstructures in order to study their oxidation behavior. The reason for selecting manganese as an alloying element was to enhance the toughness of the compound. Ti47Al48Mn5 alloys were obtained through mechanical alloying, cold pressing and heat treatment. XRD results showed that milling of the elemental powder mixture for 30 hours causes the formation of Al and Mn in Ti solid solution, while by increasing milling time up to 50 hours, amorphization of powder mixture occurs. To obtain duplex and fully lamellar microstructures, the mechanically alloyed powders were cold pressed and then heat treated at 1100 °C and 1400 °C in argon atmosphere for 50 hours, respectively. The results of the oxidation test at 1000 °C revealed that the different microstructures of Ti47Al48Mn5 alloy investigated in this study have little effect on the oxidation resistance, and similar oxidation mechanisms existed for the two microstructures.
M. Pourkarimi, B. Lotfi, F. Shahriari Nogorani,
Volume 35, Issue 4 (Journal of Advanced Materials-Winter 2017)
Abstract

In this study, creation of a silicon aluminide coating on IN738LC nickel-based superalloy has been investigated, using co-deposition process. Thermochemical calculations indicated the possibility of obtaining a silicon aluminide with NH4Cl activated pack powder at 900°C, in order to achieve coating with desirable structures. Two powder mixtures with nominal compositions of 7Si-14Al-(1-3) NH4Cl-Al2O3 (wt. %) and 16Si-4Al-(1-3) NH4Cl-Al2O3 (4 and 0.5 Si/Al ratios, respectively) were used. According to the results, both coatings showed multi-layered structures containing AlNi2Si as dominant phase. In coating created by pack powder with Si/Al ratio of 0.5, a porous and brittle layer of NiSi was formed on the surface which deteriorated the mechanical properties of coating to some extent. It was found that inward diffusion of Al was dominant at the first stage, while afterward, inward diffusion of Si led to conversion of NiAl phase to AlNi2Si and, finally, to NiSi phase. Eventually, the sample coated by Si/Al=4, showed superior microstructural characteristics, containing desirable AlNi2Si phase without undesirable brittle NiSi phase.


Z. Talebi, Mahin Karimi, Negar Habibi,
Volume 37, Issue 1 (Journal of Advanced Materials-Spring 2018)
Abstract

In the present study, silica aerogel was evaluated by a two-step catalytic process at the ambient pressure drying, under different synthesis conditions. The effects of  the catalyst and water content in the hydrolysis step on the physical properties of silica aerogel, including density, porosity and shrinkage, were investigated. The results showed that increasing the water content in the hydrolysis step increased the shrinkage of gel network and density of obtained aerogel. Moreover, in the presence of insufficient water, NH4OH as the condensation catalyst in the gel formation step was more effective on the physical properties of silica aerogel, as compared to HCl as  thehydrolysis catalyst; Moreover, the increase in the NH4OH content led to lower density and higher porosity. On the other hand, NH4OH effect on the physical properties of silica aerogel was not noticeable in the presence of enough water content. In the NH4OH/HCl molar ratio of 6, the best silica aerogel sample was obtained with the density of 0.214 g/cm3, porosity of 90% and shrinkage of 23%


A. Karimian, Kalantar,
Volume 39, Issue 1 (Journal of Advanced Materials-Spring 2020)
Abstract

In this research, barium calcium hexaferrite (Ba1-xCaxFe12O19 , 0≤x£1) nanoparticles were synthesized through a sol-gel combustion method. The dried gel samples were then calcined at 950ºC for 4:30h. The phase and microstructural evolution of calcined samples were investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results revealed formation of calcium -barium hexaferrite phase with a small amount of hematite as a secondary phase.  The average particle size is between 60-100 nm and the particle morphology is hexagonal or plate like structure. Results of a vibrating sample magnetometer (VSM) showed that the sample with x=0.4, exhibited the lowest value of saturation magnetization in comparison with others. This could be due to structural heterogeneity and presence of higher amounts of non- magnetic phases (BaFe2O4 and Fe2O3) in this sample compared to others. The results of sensory testing in acetone gas showed that the barium-calcium hexaferrite sample with x=0.2 had the highest sensitivity (0.28) and shortest response (15s) at a concentration of 900 ppm and a temperature of 200 °C despite of the long recovery time.

H. R. Karimi, H. Mansouri, M. R. Loghman Estarki, M. Tavoosi , H. Jamali,
Volume 40, Issue 1 (Journal of Advanced Materials-Spring 2021)
Abstract

This study aimed to compare the phase changes and morphology of yttria-stabilized zirconium oxide powders (YSZ) synthesized by co-precipitation and molten salt methods. Ammonia precipitating agent was used for the synthesis of YSZ powder by co-precipitation method and a mixture of sodium carbonate and potassium carbonate salts was used as a molten salt in the molten salt method. Samples were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) analysis. The results showed that only the sample prepared with zirconium oxychloride and yttrium nitrate by co-precipitation method had a single phase of yttria-stabilized zirconium oxide with tetragonal crystal lattice and particle size distribution in the range of 30 to 55 nm. The powder synthesized by the molten salt method contained a mixture of zirconia with monoclinic crystal lattice and yttria stabilized zirconia with tetragonal crystal lattice and particle size of 200 nm.

R. Karimi-Chaleshtori, M. R. Saeri, A. Doostmohammadi ,
Volume 40, Issue 1 (Journal of Advanced Materials-Spring 2021)
Abstract

Silver nanowires (AgNWs) are considered as one-dimensional nanostructures, which have received much attention due to their nanoscale size, high aspect ratio, high electrical and thermal conductivity, optical transparency and high mechanical stability. Preparation of AgNWs by polyol process is remarkably sensitive to the interactions between synthesis parameters. In this study, the effect of the simultaneous change of four synthetic parameters, namely the reaction temperature, the molecular weight of polyvinylpyrrolidone (PVP) stabilizer, the amount of sodium chloride, as well as, the solution mixing rate by the polyol process was reported. ­The results of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) confirmed that the synthesized AgNWs were below 100 nm. X-ray energy dispersive spectroscopy (EDS), ­X-ray diffraction (XRD) analysis, as well as, Fourier transform infrared spectroscopy (FT-IR) confirmed that the formed AgNWs were free of impurities. It was also found that temperature, molecular weight of PVP, salt concentration and solution mixing rate caused a significant change in the morphology of AgNWs. More importantly, a strong interaction was created in the preparation process of AgNWs by adjusting the parameters.

F. Fareghdeli, M. Karimi, A. Novin, M. Solati-Hashjin,
Volume 40, Issue 3 (Journal of Advanced Materials-Fall 2021)
Abstract

One challenge in preparing polymer/ceramic composites is non-uniform ceramic particles distribution in a polymer matrix. This research evaluated the effect of stirring time and temperature on hydroxyapatite (HA) distribution through (polylactic acid) PLA matrix. Therefore, to mix the ceramic suspension with the polymer solution, three temperatures, namely 25, 37, and 45°C and four times including 6, 12, 24 and, 48 h were examined. Fourier-transform infrared spectroscopy (FTIR) analysis was used to investigate the bonds, which showed physical bond formation such as carboxyl-calcium-carboxyl between HA and polymer matrix, influenced on particles distribution. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS) were used to observe particles distribution and determine samples homogeneity. To fulfill this goal, each obtained photograph representing the calcium presentation was split into nine equal sections, and a method based on the newly defined index called dispersion factor “α” was used to analyze the distribution. Results showed that the sample prepared at 37°C and 48 h had the topmost homogeneity properties.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb