Search published articles


Showing 2 results for Mousavi Ghahfarokhi

S. E. Mousavi Ghahfarokhi, F. Bazdar, I. Kazeminezhad,
Volume 36, Issue 2 (Journal of Advanced Materials-Summer 2017)
Abstract

In this paper, Ni-doped lead hexaferrites (PbFe12-xNixO19) nanoparticles with x = 0.2 were prepared by sol- gel method. Then, the effect of annealing temperature on its structural, magnetic and dielectric properties was studied. First, the dryed gel was evaluated by Thermogravimetry-Differential Thermal Analysis (TG/DTA) and then, the structural morphology, magnetic and dielectric properties of samples have been characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and LCR meter. The results of x-ray diffraction patterns show that by increasing annealing temperature up to 800 °C, PbFe11.8Ni0.2O19 phase percentage in the samples increases. Also, by increasing annealing temperature, the magnetization increases because the unwanted phases disappear and pure and single-phase lead hexaferrite are formed. By increasing frequency, first the AC electrical conductivity of the samples decreases and then increases. These variations have been explained by Maxwell- Wanger model. The result measurements show that the best sample is PbFe11.8Ni0.2O19 with annealing temperature of 800 °C for 3 h.
 


N. Alirezaei Varnosfaderani, S. E. Mousavi Ghahfarokhi, M. Zargar Shoushtari,
Volume 38, Issue 3 (Journal of Advanced Materials-Fall 2019)
Abstract

In this paper, W-type SrCo2Fe16O27 hexaferrite nanostructures were synthesized by sol-gel auto-combustion method. Effect of annealing temperature on the structural, magnetic and optical properties of these SrCo2Fe16O27 nanostructures was investigated. In order to determine the annealing temperature of samples, the prepared gel was examined by thermo-gravimetric and differential-thermal analyses. Morphology and crystal structure of the prepared samples were characterized by field emission scanning electron microscopy and X-ray diffraction pattern. Based on X-ray diffraction results, at annealing temperature of 1000 °C, the maximum amount of main phase formed. A planar morphology was spectroscopy for the synthesized samples through scanning electron microscope images. Fourier transform infrared analysis was used to confirm the synthesis of the main properties obtained of samples were measured by the vibrating sample magnetometer and the results showed that by increasing temperature, magnetic saturation increases. Moreover, optical properties of samples were investigated by ultraviolet–visible absorption and photoluminescence spectroscopies. The result of measurements of the energy gap approximately is same in the ultraviolet- visible and photoluminescence spectroscopes and also the energy gap is constant with increasing temperature.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb