Search published articles


Showing 4 results for Nemati

J. Jaafaripour Maybody, E. Salahi, A. Nemati, M.h. Amin,
Volume 30, Issue 1 (Jun 2011)
Abstract

In the present study, in-situ synthesis of carbon nanotube/hydroxyapatite nano composite powder with stable homogeneous dispersions of carbon nanotubes (CNTs) was carried out using surfactant as dispersing agent. By applying sol-gel method, dispersion in the hydroxyapatite matrix and its effects on the microstructure were investigated. The chemical and phase composition, structure and morphological and size analyses were performed using XRD, FT-IR, SEM, TEM/SAED/EDX, Raman, UV-Vis spectroscopy and differential scanning calorimetry (DSC). The influences of different dispersing agents (sodium dodecyl sulfate, SDS) as a benchmark for future dispersion experiments) and excitation wavelength are discussed and the results are compared to the commonly used UV-Visible spectroscopic analysis. The results indicated that synthesis of hydroxyapatite particles in the presence of the carbon nanotubes had the best homogenization of the carbon nanotube dispersion and faster crystallization of hydroxyapatite, and the use of SDS for dispersion carbon nanotubes at hydroxyapatite matrix rendered formation of hydroxyapatite coating on CNTs surface. The average crystallite size of heat-treated (at 600°C) samples, estimated by Scherrer,s equation, was found to be ~50-60 nm that was confirmed by TEM.
Z. Taherian, M. A. Yousefpour, M. A. Faghihi Sani, A. Nemati,
Volume 31, Issue 1 (Jun 2012)
Abstract

The aim of this work was synthesis of MCM-41/HA nanocomposite and biodegradation behavior of pure silica-mesoporous in attendance of hydroxyapatite crystals. These materials were synthsized by sol-gel method and ageing at 100°C for 24hr. A surfactant was used as template. The pores were formed after removal of surfactant by calcination at 550°C. FTIR results demonstrated formation of silanol and siloxan groups of silica network and hydroxyl and phosphate groups of HA network. Also SEM, TEM and EDS results confirmed presence of HA crystals within MCM-41 structure. Finally biodegradation behavior was examined by ICP and FTIR analysis. The results indicated biodegradable HA phase in the nanocomposite (with release of Ca2+ inos in water and the increasing of the pH value) can increase non-bridging oxygens of the silica network and therefore, it improves biodegradation behavior of silica network.
F. Meraji, M. Mashhadi, M. Tamizifar, A. Nemati,
Volume 34, Issue 1 (Journal of Advanced Materials-Spring 2015)
Abstract

In this study, AlN whiskers were prepared in a tube furnace at 1000˚C for 1h with 500 nitrogen gas flow. Al powders with particle size of 3 μm and 45 μm and NH4Cl were used as raw materials. SEM, TEM and XRD analysis were used to characterize AlN whiskers. The results showed that the diameters of AlN whiskers would range from 140 nm to 340 nm if different amounts of NH4Cl and 3 μm Al powder were used. In the case of using NH4Cl more than 40wt%, pure AlN without any unreacted Al was formed as the final product. Using NH4Cl and Al with particle size of 45 μm led to AlN whiskers with 630 nm to 870 nm in diameter. By adding 50%wt NH4Cl, pure AlN was formed. The diameter of the whiskers was increased by increasing NH4Cl content in starting materials (about 200 nm). Also, an increase in the diameter of AlN whisker resulted from coarse Al powder. By adding NH4Cl to Al, thermodynamically spontaneous cholororination - nitridation reactions were increased in vapor phase and whiskers and pure AlN powder were produced.


Sh. Tavakoli Dehaghi, S. Darvishi, Sh. Nemati, M. Kharaziha,
Volume 37, Issue 3 (Journal of Advanced Materials-Fall 2018)
Abstract

Abstract: With the advances in the development of biomaterials for tissue replacement, the attention of scientists has been focused on the improvement of clinical implant properties. In this regard, despite the appropriate properties of the stainless steel, the application of stainless steel as implants has been limited due to the weak corrosion resistivity. The purpose of this paper was preparation and characterization of hydrophobic polydimethylsiloxane (PDMS)-SiO2-CuO nanocomposite coating on the 316L stainless steel surface. The 316L stainless steel was coated by SiO2 nanoparticles (20 wt. %), CuO nanoparticles (0.5, 1 and 2 wt. %) and biocompatible PDMS. In this research, x-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to characterize the coating. Moreover, the roughness and water contact angle of the coatings consisting of various amounts of CuO nanopowder were estimated. Finally, the effects of various amounts of the CuO nanopowder on the corrosion resistivity of nanocomposite coatings were investigated. XRD patterns confirmed the presence of crystalline CuO nanoparticles on the substrate. Due to the non-crystalline nature of silica nanoparticles and the semi-crystalline PDMS polymer, no peak confirming the presence of these phases was detected on the XRD pattern of the nanocomposite coating. SEM images showed the formation of a lotus leaf-like layer on the surface of the nanocomposite coating containing 1 and 2 wt. % CuO. Moreover, water contact angle evolution revealed that while contact angle was 81 degree without CuO nanoparticles, it was enhanced to 146 degree in the presence of 1 wt. % CuO. Moreover, the corrosion study showed the nanocomposite containing 2 wt.% CuO had the best corrosion resistance, the corrosion current density of 2.1E-7 A.cm-2, and the corrosion potential of 0.22 V.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb