Search published articles


Showing 7 results for Niroumand

R. Jamshidi-Alashti, M. Borouni, B. Niroumand,
Volume 32, Issue 2 (Dec 2013)
Abstract

Application of ceramic reinforcements is one of the effective and well-known ways to refine the microstructure of brittle metals such as magnesium. In this research, the influence of nano/micro particles of zirconia on the microstructure of cast AZ91 alloy was studied. At the first stage, nano and micro ZrO2 powders were blended through mechanical alloying procedure. In five specimens, the total amount of nano and micro reinforcements in the final mixture was fixed at 5 wt%, whereas their ratio was varied. Two other composites were also produced using 5wt% of nano or micro particles of zirconia. These powder mixtures were then stirred in the molten AZ91 at 650C by vortex method and finally cast in a sand mold at 615C. For comparison, two monolithic castings including a conventionally cast specimen and a super heat-treated sample were also cast. The average grain sizes for all composites were decreased with respect to both monolithic castings. The best results in terms of grain size and microstructure improvement were obtained for AZ91/5wt% nano ZrO2 composite with remarkable improvement in comparison with monolithic castings.
M.r. Dehnavi, B. Niroumand, F. Ashrafizadeh,
Volume 34, Issue 1 (Journal of Advanced Materials-Spring 2015)
Abstract

Effects of discontinuous ultrasonic treatment on the microstructure, nanoparticle distribution, and mechanical properties of cast Al413-SiCnp nanocomposites were studied. The results showed that discontinuous ultrasonic treatment was more effective in improving the mechanical properties of the cast nanocomposites than the equally timed continuous treatment. The yield and ultimate tensile strengths of Al413-2%SiCnp nanocomposites discontinuously treated for two 20 minute periods increased by about 126% and 100% compared to those of the monolithic sample, respectively. These improvements were about 107% and 94% for the nanocomposites continuously treated for a single 40 minute period. The improvement in the mechanical properties was associated with severe refinement of the microstructure, removal of the remaining gas layers on the particles surfaces, more effective fragmentation of the remaining agglomerates as well as improved wettability and distribution of the reinforcing particles during the first stage of solidification.


S. Riahi, B. Niroumand,
Volume 35, Issue 2 (Journal of Advanced Materials-Summer 2016)
Abstract

Preliminary results of a research on the effects of microstructure and surface roughness of a hypoeutectic cast iron on its wetting angle are presented in this article. For this purpose, molten cast iron was solidified at different cooling rates to produce two samples of the same composition, i.e. a gray cast iron with A type flake graphite and a white cast iron. Two samples were then prepared in polished, electroetched (four different stages) and mechanically abraded (four different stages) conditions and their wetting angles were measured after evaluating their roughness profile. Maximum and minimum wetting angles were observed on white cast iron surfaces roughened with 80 and 800 sand papers which were equal to 42 and 13 degrees, respectively.Wetting angles of electroetched white cast iron surfaces varied between 25 and 31 degrees by varying surface roughness. Maximum and minimum wetting angles on the surface of gray cast iron were obtained in stage one (40 degree) and stage three (25 degree) of electroetching, respectively. Wetting angles on mechanically abraded surfaces of this sample varied between 27 and 31 degrees. Then, the surface roughness factor and the solid fraction in contact with water were calculated using Wenzel equation and Cassie Baxter equation, respectively, and Wenzel and Cassie-Baxter wetting angles of the surfaces were calculated and were compared with their corresponding measured wetting angles. The results indicated that the surface microstructure and the type of constituents present at the surface, surface-roughening method and surface-roughness value influence the cast iron surface wettability, and it is possible to modify metal wetting angle by modification of its structure, surface-roughness method and surface-roughness value. It was also shown that in gray cast iron, the wetting behavior of the electroetched surfaces followed Cassie-Baxter equation in the first and second stages of electroetching and followed Wenzel equation at higher surface roughness (third and fourth stages of electroetching). In all stages of mechanically abrading, the surface of this sample followed Wenzel equation. The wetting behavior of the white cast iron followed Wenzel equation in all electroetching stages. In mechanically abraded conditions, the white cast iron wettability was variable and depended on the surface roughness.


M. Soltani, B. Niroumand, M. Shamanian,
Volume 36, Issue 2 (Journal of Advanced Materials-Summer 2017)
Abstract

In this paper, the optimization of the surface composite of Mg AZ31B-carbon nanotub(CNT) via friction stir processing was investigated. Then, the most effective process parameters such as transverse speed, rotational speed, CNT weight percent and welding passes were studied by Response Surface Methodology (RSM) design of experiment. The specimens were also characterized by micro-hardness, tensile, shear punch and pin on disk dry sliding wear tests. The optimization results of hardness and weight reduction responses showed that the best conditions would be achievable with a transverse speed of 24 mm/min, rotational speed of 660 rpm, 4wt.% CNT and 3 welding passes. Moreover, fracture analysis of the surfaces proved a uniform distribution of CNTs in the matrix resulted in higher tensile and shear strength.
 


M. Khoobroo, A. Maleki, B. Niroumand,
Volume 36, Issue 3 (Journal of Advanced Materials-Fall 2017)
Abstract

Conventionally, alloying elements are being added to the whole melt; however, in this research in-situ surface alloying of gray cast iron was employed to improve surface properties of the castings. Wires of pure copper with diameters of 0.4 and 0.8 mm were inserted and fixed at bottom of sand molds before melting. Chemical composition analysis revealed the presence of copper from surface to a depth of 1 cm. Microstructural investigations indicated that graphite type changed from A to D and E. Moreover, the content of graphite phase decreased while that of pearlite increased at the surface. Hardness was higher at surface of copper added samples. Wear resistant of the in-situ surface alloyed samples was better than the no-copper added ones.
 


M. Lashani Zand, B. Niroumand, A. Maleki,
Volume 37, Issue 4 (Journal of Advanced Materials-winter 2019)
Abstract

Mechanical properties of the alloys are a strong function of the average silicon particles size and the secondary dendrite arm spacing (SDAS). Modified Hall-Petch equation expresses the effects of these two microstructural parameters on the yield strength and ultimate tensile strength of the Al-Si based alloys. These microstructural parameters depen on parameters such as chemical composition, cooling rate and melt treatment. In this study, the effect of cooling rate on the  equation constants of the alloy were determined. For this purpose, the alloy was poured at 750 °C in three different molds including a sand mold, a preheated steel mold, and a water cooled steel mold. The Thermal and microstructural analysis showed that the cooling rate in the metal mold was 15.7 times higher than that of the sand mold, which resulted in a decrease of the SDAS from 54 micrometers to 17 micrometers. It was also found that by reducing the SDAS from 45 micrometers to 17 micrometers, the yield strength and tensile strength were increased by 16.5% and 6.5%, respectively. The modified Hall-Petch equation constants and the microstructure-mechanical properties relationships were then established by the microstructural and tensile test studies.

A. Mohammadi, B. Niroumand, A. Saboori,
Volume 40, Issue 4 (Journal of Advanced Materials-Winter 2022)
Abstract

Electron beam melting (EBM) is among the modern additive manufacturing processes whereby metal powders are selectively melted to produce very complicated components with superior mechanical properties. In this study, microstructure, hardness, and surface roughness of EBM fabricated Ti6Al4V samples were characterized. The results showed that the microstructure consisted of epitaxially-grown primary columnar β phase transformed to basketweave and Widmanstatten-type α phase during the subsequent rapid cooling. Martensitic needle-type α phase was also observed on the surfaces of the specimens. It was shown that higher parts of the sample had finer microstructures than the lower parts reaching to less than 340 nm in average thickness of the α layers due to distancing from the hot build platform rendering less opportunity for diffusional β → α+β transformation. The porosity content of the samples was lower than that of some other additive manufacturing processes. Vickers micro-hardness of the samples was measured to be around 337 HV which was higher than those reported for other additive manufacturing processes of the alloy.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb