Search published articles


Showing 2 results for Rezaeian

A.h. Khosrovaninezhad, M. Shamanian, A. Rezaeian , M. Atapour,
Volume 34, Issue 2 (Journal of Advanced Materials- Summer 2015)
Abstract

This paper reports on the mechanical properties of the dissimilar joints between AISI 316 austenitic stainless steel and St 37 low carbon steel achieved using friction stir welding technique. The welding was carried out by means of rotational speed of 800 rpm and linear speeds of 50,100,150 mm/min. EDS and XRD techniques were employed in order to determine possible phase transformations. Tensile test, shear punch test and microhardness measurements were conducted to evaluate the mechanical properties of the joints. The results of phase investigations showed that no carbide and brittle phase were detected at the joint boundary. Also, tensile test results demonstrated that failure occurred in the St 37 base metal. According to the shear punch test, the highest ultimate shear strength and yield shear strength was achieved for the sample welded at rotational speed of 800 rpm and linear speed of 150 mm/min, while this sample showed the least elongation. In addition, the highest microhardness was measured in the stir zone of austenitic stainless steel sample welded in the above mentioned welding condition, which can be attributed to the decrease in grain size caused by recrystallization process.
S. E. Mousavi, M. Meratian, A. Rezaeian,
Volume 36, Issue 4 (Journal of Advanced Materials-Winter 2018)
Abstract

Equal Channel Angular Pressing (ECAP) is currently one of the most popular methods for fabricating Ultra-Fine Grained (UFG) materials. In this study, mechanical properties of the 60-40 two phase brass processed were evaluated by ECAP. The samples were repeatedly ECAP-ed to strains as high as 2 at a temperature of 350 ◦C using route C. The microstructure of the samples showed that small grains were formed in the boundaries which indicates the occurrence of recrystallization in different passes. Observation of slip trace in the microstructure of the samples showed that even in such alloy with a low-stacking fault energy, dislocations slip trigger the deformation. Investigation of mechanical properties showed that with increasing the number of passes, tensile strength, microhardness and ducility improved at the same time.
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb