Search published articles


Showing 3 results for Surface Modification

M. Yousefpour,, A. Zareidoost , A. Amanzadeh,
Volume 30, Issue 1 (6-2011)
Abstract

The osseointegration of oral implants is related to the early interactions between osteoblastic cells and titanium surface. Chemical surface modification of titanium (Ti) implants is used to improve peri-implant bone growth, bone-to-implant contact, and adhesion strength. Thus, in this study, the surface topography, chemistry, and biocompatibility of polished titanium surface treated with mixed solution of three acids containing hydrochloric acid (HCl)- hydrofluoric acid (HF)- phosphoric acid (H3PO4) were studied under different concentration conditions. Moreover, Osteoblast cell (MG-63) was cultured on the and treated polished titanium surface. Also, in order to investigate titanium surface, SEM, AFM and EDS analyses were carried out. The results revealed that the surface of titanium treated with mixed solution containing the aforesaid acids had higher roughness, cell attachment, and proliferation than the controls
A. Abdolahi, M. R. Saeri, F. Tirgir, A. Doostmohammadi, H. Sharifi,
Volume 35, Issue 1 (6-2016)
Abstract

In this study, NBG was successfully achieved through a sol-gel technique, and to further improve its dispersibility, a crylate coupling agent was coupled onto the surface of the NBG. The 3-(Trimethoxysilyl)Propylmethacrylate coupling agent was used to the surface modification of the synthesized NBG by a wet-chemical method in a dynamic inert nitrogen atmosphere. The surface properties of the biomaterials before and after modification were characterized and compared using FTIR and AFM techniques. The characteristic peaks in FTIR spectra indicated that –CH2, –CH3 and C=O groups appeared on the surface of modified NBG, and also, AFM analysis revealed that the dispersibility of surface modified NBG was improved, significantly. The above results proved that the desired groups of 3-(Trimethoxysilyl)Propyl methacrylate had been covalently bonded onto the surface of NBG. Besides, a nanocomposite scaffold was synthesized using the synthesized NBG and polyurethane foam as raw materials. The morphology of pores, porosity contents, compress strength and bioactivity of the scaffold were studied. The results showed that the biological scaffolds for use in bone tissue engineering with the basic requirements (90% porosity and 200-600 μm pore diameter) were successfully prepared. The polymer component had no effect on the relationship between the scaffold pores and bioactivity of bioglass nanoparticles. Improvement of compressive strength and proper bioactivity of the resulted scaffold showed that it is an acceptable candidate for biomaterials applications.


E. Shirani, A. Razmjou,
Volume 36, Issue 4 (3-2018)
Abstract

The significance of producing superhydrophobic surfaces through modification of surface chemistry and structure is in preventing or delaying biofilm formation. This is done to improve biocompatibility and chemical and biological properties of the surface by creating micro-nano multilevel rough structure; and to decrease surface free energy by Fault Tolerant Control Strategy (FTCS) . Here, we produced a superhydrophobic surface through TiO2 coating and flurosilanization methods. Then, in order to evaluate the physicochemical properties of the modified surfaces, they were characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Contact Angle (CA), cell viability assay (using Hela and MCF-7 cancer cell lines as well as non-cancerous human fibroblast cells) by MTT, Bovine Serum Abumin (BSA) protein adsorption using Bradford and bacterial adhesion assay (Staphylococcus aureus and Staphylococcus epidermidis) using microtiter. Results showed that contact angle and surface energey of superhydrophobic modified surface increased to 150° and decreased to 5.51 mj/m2, respectively due to physicochemical modifications of the surface. In addition, the results showed a substantial reduction in protein adsorption and bacterial cell adhesion in superhydrophobic surface.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb