Search published articles


Showing 2 results for Amorphous Carbon

F. Delshad, M. Maghrebi, M. Baniadam,
Volume 40, Issue 2 (9-2021)
Abstract

Carbon nanotubes contain impurities and deamorphization is one of the methods of their purification. In this study, for the first time, a solution of piranha with a ratio of 3:1 (30 ml sulfuric acid + 10 ml hydrogen peroxide) as well as microwave irradiation with processing time of 30 minutes were used to remove amorphous carbon from the nanotube arrays. Ultrasonication was performed to disperse pristine and purified carbon nanotubes in water and centrifugation was performed to separate large particles. To assess the removal of amorphous carbon, new characterization methods such as dispersed percent and floating percent were used. It was observed that with increase in the ultrasonication time (from 0 to 50 minutes), the dispersed percentage of treated arrays was increased (about 47%), while the floating percentage of pure array decreased (about 20%). These results are ascribed to the removal of amorphous carbon. The results of the thermo gravimetric analysis (TGA) were in good agreement with the results obtained from the newly proposed characterization methods.

E. Mohagheghpour, R. Gholamipour, M. Rajabi, M. Mojtahedzadeh Larijani,
Volume 40, Issue 3 (11-2021)
Abstract

In this study, the amorphous carbon thin films were deposited by ion beam sputtering deposition method on the glass and Ni–Cu alloy substrates. The structural evolution of amorphous carbon and its correlation with the kinetic energy of carbon atoms during the growth of thin film was investigated. The effect of substrate material, deposition temperature, and ion beam energy on the structural changes were examined. Raman spectroscopy indicated a structural transition from amorphous carbon to diamond-like amorphous carbon (DLC) due to an increase in deposition temperature up to 100°C and ion beam energy from 2 keV to 5 keV. The size of graphite crystallites with sp2 bonds (La) were smaller than 1 nm in the amorphous carbon layers deposited on Ni-Cu alloy. The results of residual stress calculation using X-ray diffractometer (XRD) analysis revealed a decreasing trend in the tensile residual stress values of the amorphous carbon thin films with increasing the ion beam energy.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb