Search published articles


Showing 2 results for Anisotropy

M.a.rowshanzamir and A. Jafari,
Volume 24, Issue 2 (1-2006)
Abstract

Cohesive-frictional soils are widely used in the construction of embankment structures and due to the method of construction, i.e. applying compactive efforts in the vertical direction in these cases, the occurrence of anisotropy in the soil strength and permeability seems to be inevitable. In this study, attempts have been made to evaluate the shear strength of c-f soils through modifying a large shear box apparatus. Conducting more than 108 direct shear tests, the effects of compaction method and moisture on the shear strength anisotropy of a selected c-f soil (a clayey sand) have then been investigated. According to the test results, firstly strength anisotropy was observed in all the soil specimens and the shear strength in the vertical direction was about 14% to 21% higher than that in the horizontal direction. Secondly, it was found that an increase in the compaction moisture led to an increase in the degree of anisotropy. Furthermore, the anisotropy in the cohesive strength was more pronounced in the specimens with a moisture content higher than the optimum one. The highest degree of anisotropy was observed in the specimens compacted by impacting effort and the lowest one belonged to those with the vibratory compaction.
M. Salimi, M. Jamshidian, A. Beheshti, and A. Sadeghi Dolatabadi,
Volume 26, Issue 2 (1-2008)
Abstract

The mechanical behavior of cold rolled sheets is significantly related to residual stresses that arise from bending and unbending processes. Measurement of residual stresses is mostly limited to surface measurement techniques. Experimental determination of stress variation through thickness is difficult and time-consuming. This paper presents a closed form solution for residual stresses, in which the bending-unbending process is modeled as an elastic-plastic plane strain problem. An anisotropic material is assumed. To validate the analytical solution, finite element simulation is also demonstrated. This study is applicable to analysis of coiling-uncoiling, leveling and straightening processes.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb