Search published articles


Showing 16 results for Annealing

H. Z. Aashtiani and B. Hejazi,
Volume 20, Issue 2 (4-2001)
Abstract

Bus network design is an important problem in public transportation. A main step to this design is determining the number of required terminals and their locations. This is a special type of facility location problem, which is a time-consuming, large scale, combinatorial problem. In a previous attempt by the authors, this problem had been solved by GAMS, based on a branch and bound algorithm. In this research, different techniques for solving the problem are investigated to choose the best one. One of these methods is Simulated Annealing (SA), which is an efficient algorithm for solving complex optimization problems. SA’s parameters vary from one problem to another. Here, for the bus terminal location problem, SA’s parameters are determined, then the problem is solved. Another algorithm is the Implicit Enumeration method. In this paper, the results obtained from the above 3 techniques are compared. The criteria for this comparison are the CPU time and the accuracy of the solution. In all the cases studied, SA gave the most accurate results. Its CPU time is lower than the others, too. Solving the bus terminal location problem for the Mashhad network shows that SA is about 150 times faster than GAMS and 50 times faster than Implicit Enumeration. Moreover, bus terminal location problem for the network of the city of Tehran, which is a more difficult problem, has been solved by the SA algorithm successfully. Keywords: Bus network, Lacation problem, Heuristic, Simulated Annealing, Implicit Enumeration
Gh. Moslehi and A. R. Rezaie,
Volume 23, Issue 2 (1-2005)
Abstract

In this paper, two-dimensional cutting stock problem with demand has been studied.In this problem, cutting of large rectangular sheets into specific small pieces should be carried out hence, the waste will be minimized. Solving this problem is important to decrease waste materials in any industry that requires cutting of sheets. In most previus studies, the demand of pieces has not been usually considered. The cutting problems belong to the category of Np-hard problems. So finding a desirable solution in a suitable time is practically impossible and heuristic methods must be used. A meta-heuristic algorithm using SA approach is presented.Then attempt will be made to regulate the SAs parameters. Initial solutions are produced with a rule based algorithm and two internal and main SAs are used that lead to better performance of the algorithm. Due to lack of benchmark or test problems, two procedures for generating random problems is presented and are used to study efficiency of the algorithm. For this purpose, problems about 10 to 50 types of pieces with maximum demands of 2400 are generated and solved using the proposed algorithm. The results indicate that the algorithm capable of finding a solution with less than 6% of waste for problems with 30 types of pieces and total demands of 500.
S. Vahabzadeh, M. A. Golozar, F. Ashrafizadeh and A. Ghasemi,
Volume 27, Issue 2 (1-2009)
Abstract


A. Maghzian, A. Monshi, M.h. Fathi,
Volume 29, Issue 2 (12-2010)
Abstract

In the last decade, Calcium Titanate has been introduced as a bioceramic with acceptable mechanical and biological properties for orthopaedic implant applications. In this study, CaTiO3 nano-structure coating was produced by sol-gel dip-coating route for biomedical applications. Calcium nitrate and titanium isopropoxide were used as a precursor. After coating process, the specimen was subjected to rapid thermal annealing (RTA) at 800°C. The phase structure, functional groups and surface morphology of coating were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Uniform crack-free nano-structured coatings were obtained with perovskite crystal structure.
R. Lotfi Orimi, V. Asghari , M. Lashkarbolouki,
Volume 30, Issue 1 (6-2011)
Abstract

ZnS nanoparticles were synthesized by chemical precipitation method. As-prepared ZnS nanoparticles were found to be stabilized in the form of cubic phase. Cubic to hexagonal structural transformation was studied using X-ray diffraction (XRD). The effect of annealing temperature (100-700 ) on the band gap, particle size, and structural phase was investigated. Photoluminescence studies indicated two strong and narrow emission peaks in blue and orange regions. These two strong and narrow emission peaks were shifted to blue and red regions by increasing the annealing temperature..
M. Rajabi, R. A. Sedighi , S. M. Rabiee,
Volume 34, Issue 2 (7-2015)
Abstract

In this study, the effect of mechanical alloying on the microstructure and phase constituents of Mg-6Al-1Zn-1Si system was investigated. To understand the thermal behavior, isothermal annealing was performed at three different temperatures of 350, 400 and 450 °C for 1h. The results showed the grain size initially decreases with increasing the milling time up to 35h and then slightly increases. In contrast, the lattice strain increases sharply with increasing the milling time up to 35h and then decreases. Second-phase intermetallic particle Mg2Si was produced during annealing and the amount of this phase was increased with increasing annealing temperature. The mechanical alloying process decreased the formation temperature of Mg2Si.
A. Ghotbi Varzaneh, P. Kameli, F. Karimzadeh, H. Salamati,
Volume 34, Issue 3 (12-2015)
Abstract

In this investigation, Ni47Mn40Sn13 ferromagnetic shape memory alloy was prepared by mechanical alloying. The metal powders were ball milled in argon atmosphere for 20 hours. X-ray diffraction pattern confirmed formation of crystalline structure of Heusler alloy. As-milled powder samples were sealed in quartz tubes under high vacuum and subjected to heat treatments at 950°C for different time durations. Then, the effect of isothermal ageing on structural, magnetic and electrical properties of samples was investigated. Results of electrical resistance displayed a metal-like behavior around martensitic transformation. The results showed that 16 hours of annealing was the optimal time for producing this alloy which could be an appropriate candidate for magnetic refrigerant.


S. Gholipour, S.r. Hosseini, R. Shoja Razavi,
Volume 35, Issue 1 (6-2016)
Abstract

This study aims at investigation of the hydrogen damage after dissolution annealing and two-stage aging in aluminum 7075 alloy. Dissolution annealing was performed at 500 to 575 °C for duration of 1 to 20 hours. The first stage of two-stage aging was performed at 180, 200 and 220 °C for 30 minutes. The second stage was carried out at 120 and 150 °C for 10, 15 and 20 hours. Structural characteristics and chemical composition of precipitates was investigated using SEM and EDS methods, respectively. Reduction of the tensile strength in T6 process after hydrogenation reached to 150 MPa, although it decreased only, about 50 MPa in the two-stage process. Overall, tensile strength after hydrogen charging was significantly increased in the two-stage aging compared to the T6 process.


M. Assadi, S.r. Hosseini,
Volume 35, Issue 2 (9-2016)
Abstract

In the present article, RRA, T73 and T6 heat treatments were carried out to improve mechanical properties of 7075 aluminum alloy and its hardness, tensile and bending strengths were evaluated. For this purpose, solution annealing was performed at 530 ºC for 16 h. For T6 treatment, aging was executed at 150 ºC for 24 h after solution annealing. In T73, aging treatment was done in two stages after solution annealin, at 120 and 180 ºC for 7 and 20 h, respectively. RRA treatment was performed in three stages. The first stage was the same as T6 treatment, the second stage constitutes tempering at 200 ºC for
20 min and in the third stage aging process was repeated like T6 treatment.
Evaluation of the microstructures and fractured surfaces were performed with optical microscopes (OM) and scanning electron microscopes (SEM). Energy dispersive spectroscopy (EDS) was used to study the chemical composition of precipitates. Hardness, tensile and bending strength were evaluated according to ASTM E384-11e1, ASTM B557-06 and DIN 50121 standards. RRA treatment increased tensile strength from 466 to 485 MPa and hardness from 110 to 165 Vickers. After T6 treatment, tensile strength increased from 466 to 505 MPa and hardness from 110 to 160 Vickers. In T73 process, the tensile strength remained almost constant (465 MPa) but yield strength increased from 394 to 410 MPa and hardness decreased from 110 to 84 Vickers. The bending strength increased from 797 to 844, 920 and 1030 MPa in T73, RRA and T6 processes, respectively. By applying RRA process in optimized temperature and time, hardness, tensile and bending strengths of 7075 aluminum alloy were enhanced from 5 to 15% compared to that of T6 and T73 processes.


M. H. Tahmasebi, K. Raeissi, M. A. Golozar, A. Vicenzo, M. Bestetti,
Volume 35, Issue 3 (12-2016)
Abstract

In the present investigation, Mn-Ni binary nano-oxide was deposited by potentiodynamic method on stainless steel at room temperature and the effect of annealing process (at 200 oC for 6 h) on microstructure and electrochemical performance of the synthesized pseudocapacitor was studied. The results showed the significant effect of annealing process on increasing the capacitance and decreasing the charge transfer resistance of the electrode. Field Emission Scanning Electron Miscroscopy (FESEM) images depicted interconnected and random nano-flakes in the oxide film microstructure. Moreover, a partially crystallized structure consisting disorder hexagonal birnessite type phase was formed upon annealing in the deposited oxide film with about 10 %at Ni in composition. Based on the galvanostatic charge-discharge plots, the highest specific capacitance (384 F g-1) and specific energy (53 Wh kg-1) were found at specific current of 0.1 A g-1 for the annealed oxide electrode. Finally, cycle life test results at specific current of 10 A g-1 showed an excellent cyclability and an increase of about 23% in specific capacitance of synthesized pseudocapacitor after 5000 charge-discharge cycles in 1 M Na2SO4.


Dr M. Tavoosi, S. Arjmand,
Volume 37, Issue 1 (6-2018)
Abstract

In this study, the formation of the Al3Ti intermetallic compound at the junction interface of aluminum-titanium was investigated during deposition and annealing. The results illustrated that during the deposition process, one thin layer of Ti3Al2 intermetallic compound was created at the junction interface. During the annealing at 550 °C, this layer was transformed to the  Al3Ti intermetallic phase and the layer growth occurred. By performing annealing at higher temperatures, the growth rate of Al3Ti intermetallic layer was increased; at the same time, the formation of Kirkendall cavities and  coupling in the cavities and fragmentation of diffusional coupling from the junction with aluminum were observed


N. Alirezaei Varnosfaderani, S. E. Mousavi Ghahfarokhi, M. Zargar Shoushtari,
Volume 38, Issue 3 (12-2019)
Abstract

In this paper, W-type SrCo2Fe16O27 hexaferrite nanostructures were synthesized by sol-gel auto-combustion method. Effect of annealing temperature on the structural, magnetic and optical properties of these SrCo2Fe16O27 nanostructures was investigated. In order to determine the annealing temperature of samples, the prepared gel was examined by thermo-gravimetric and differential-thermal analyses. Morphology and crystal structure of the prepared samples were characterized by field emission scanning electron microscopy and X-ray diffraction pattern. Based on X-ray diffraction results, at annealing temperature of 1000 °C, the maximum amount of main phase formed. A planar morphology was spectroscopy for the synthesized samples through scanning electron microscope images. Fourier transform infrared analysis was used to confirm the synthesis of the main properties obtained of samples were measured by the vibrating sample magnetometer and the results showed that by increasing temperature, magnetic saturation increases. Moreover, optical properties of samples were investigated by ultraviolet–visible absorption and photoluminescence spectroscopies. The result of measurements of the energy gap approximately is same in the ultraviolet- visible and photoluminescence spectroscopes and also the energy gap is constant with increasing temperature.

M. Zarchi, Sh. Ahangarani ,
Volume 39, Issue 1 (5-2020)
Abstract

The structural and optical properties of polycrystalline silicon films obtained on a silicon wafer by electron beam physical vapor deposition (EBPVD), were studied in this paper. These films were initially amorphous and changed to a crystalline solid phase during annealing. Annealing was performed in an inert gas atmosphere tube furnace at different temperatures. Micro-structure of the films was analyzed to know the relationship between the crystalline / amorphous composition, grain size and characteristics of the films. The results showed a decrease in roughness with increasing annealing temperature and structural density. Moreover, results of Micro-Raman spectrum showed formation and increase of silicon nanocrystals in the annealed condition when the thickness of the coating increased due to structural defects.


Kh. Zamani, M. Tavoosi, A. Ghasemi ,
Volume 39, Issue 4 (2-2021)
Abstract

In this research, effect of B and Si addition on the structural and magnetic properties of AlCoCrMnNi high-entropy alloys was investigated. The structural and magnetic properties of AlCoCrMnNiX(X= B, Si) alloys were studied by X-ray diffractometer (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). First, the constituent components of the AlCoCrMnNiX (X=B, Si) alloys were mixed for 10 hours. XRD analysis revealed that  the solid solution was not formed by mixing. The alloys were then annealed at 900 ˚C for 10 hours. XRD results revealed formation of a solid solution with BCC structure in AlCoCrMnNi and AlCoCrMnNiB alloys. For AlCoCrMnNiSi and AlCoCrMnNiSiB alloys, Ni2Si and Cr2Si3 intermetallics were formed in addition to the solid solution with BCC structure. VSM results suggested that while forming the solid solution for AlCoCrMnNi alloy, soft magnetic properties improved so that magnetic saturation and coercivity increased from 40.22 to 64.46 emu/g, and from 180.143 to 14.09 Oe, respectively.

S. Sarafrazian, M. Tavoosi, A. Ghasemi ,
Volume 40, Issue 2 (9-2021)
Abstract

The aim of this study was optimization of the annealing process in melt spun Nd2Fe14B intermetallic magnetic alloy. In this regard, the melt spinning process was done at wheel speed of 40 m.s-1. In order to achieving the desired microstructure, the as-spun ribbons were subsequently annealed at temperature range of 500 to 700 ºC for different periods of time. Structural and magnetic characterization of produced samples were performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that the structure of as-spun ribbons at wheel speed of 40m.s-1 was composed of Fe-α, Nd2Fe14B and amorphous phases with the coercivity and saturation of magnetization in the range of 0.14 kOe and 120 emu/g, respectively. By annealing the produced ribbons and crystallization of the amorphous phase, the percentage of Fe-α and Nd2Fe14B was decreased and increased, respectively. The optimum annealing conditions for achieving the highest value of coercivity (about 9.2 kOe) was 600°C for 6h.

H. Saki, M. Morakabati, R. Mahdavi,
Volume 40, Issue 3 (11-2021)
Abstract

Metastable beta titanium alloys have the ability to achieve different microstructures as a result of various heat treatment cycles. The aim of the present study was to create a combination of fine spherical and needle-shaped alpha phase in a metastable beta Titanium alloy (Ti-3Al-8Mo-7V-3Cr) using two-phase solution annealing and aging to improve tensile properties. In this regard, one strip of the alloy was solution annealed in the two-phase region (α+β) at 750°C. Then, some of the solution treated specimens were aged in one step and the others in two steps. The microstructural observation and phase analysis were studied by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively followed by investigating tensile properties using tensile test. The results exhibited that the microstructure of the alloy after annealing in the two-phase region (α+β) consisted of a spherical primary alpha phase of 1 μm in the beta matrix. One-step aging at 600°C resulted in a microstructure without secondary alpha layers. This heat treatment cycle resulted a yield strength of 980 MPa and fracture strain of 13.9%. Two-step aging at 300°C and 600°C led to formation of the secondary alpha layers with 0.1 μm thickness and increased the yield strength and fracture strain to 1007 MPa and 15.8%, respectively.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb