Search published articles


Showing 2 results for Bimetal

S. Tavassoli, M. Abbasi, R. Tahavvori,
Volume 35, Issue 2 (9-2016)
Abstract

The purpose of this article is to study the formation of intermetallic compounds (IMCs) at the interface of Al/Cu bimetal produced by compound casting of molten Al in solid copper tubes. The mechanism of the intermetallic compounds formations at the interface, the effects of molten aluminum pouring temperature and solid copper tubes preheating tempreture, were investigated on the IMCs type and thickness and Al/Cu interface microstructures were characterized by optical microscope (OM) and electron probe micro-analyzer (EPMA). Results show that the interface consists of three main layers, where Layer (I) is α-Al/Al2Cu eutectic structure, layer (II) is intermetal of Al2Cu and layer (III) constituites several intermetallic compounds such as AlCu, Al3Cu4, Al2Cu3 and Al4Cu9. Considering the components of hypereutectic melt at the interface, initially layer (II) was formed by θ phase nucleation and growth mechanism, then layer (I) was formed by Al and Cu dissolving and solidification. Finally layer (III) was formed by solid-state phase diffusion. Raising molten Al temperature and preheating solid Cu leads to increase of the intermetallic compounds thickness at interface which consequently increases the specific electrical resistance and decreases the Al/Cu bond strength. From experimental results it seems that the bond strength is affected by the thicknesses of layer II and III.


S. Masoomi Ganjgah , M. Abbasi,
Volume 39, Issue 4 (2-2021)
Abstract

This study aims at investigating changes in microstructure and strength of W alloy and Cu bimetals with varying spark plasma sintering (SPS) temperature and percentage of copper in W-Cu-Ni alloy. After SPS of W (12 wt%)-Cu (14 wt%)-Ni (3 wt%) alloy powder into consolidated discs at 1350 ° C, they were spark plasma sintered to copper discs at various temperatures. Assessment of the interface microstructure and shear strength was performed by field emission scanning electron microscpe (FESEM) and shear strength test, respectively. Results indicated SPS is successful in forming a perfect metallic bond with monolithic interface and high shear strength of about 45 MPa in Cu/W-12Cu-3Ni bimetal that is extra high quality and not reported in previous investigations.
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb