M. Shamsi, N. Nezafati, S. Zavareh, A. Zamanian,
Volume 35, Issue 1 (6-2016)
Abstract
Ternary (%mol) (64SiO2-31CaO-5P2O5) system of sol-gel derived bioactive glass fibers was prepared by electrospinning method. X-ray Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nitrogen adsorption test (BET) analyses were performed to investigate the phase and chemical group of the composition, morphology of the surface and specific surface area of the fibers, respectively. SEM observations confirmed that the fibers were nano size. The amorphous nature and the presence of silanol groups in the composition were confirmed by XRD and FTIR, respectively. Apatite formation and biodegradability of the fibers were studied using various analyses after different days of soaking in simulated body fluid (SBF). The results affirmed the presence of apatite layers on the surface of the fibers. Cell culture evaluation indicated that MG-64 human osteoblast-like cells were attached and spread well on the surface. Furthermore, cell viability and cell growth demonstrated that the cells were grown and reproduced well on the fibers.