Search published articles


Showing 2 results for Biomaterial

M. Yousefpour,, A. Zareidoost , A. Amanzadeh,
Volume 30, Issue 1 (6-2011)
Abstract

The osseointegration of oral implants is related to the early interactions between osteoblastic cells and titanium surface. Chemical surface modification of titanium (Ti) implants is used to improve peri-implant bone growth, bone-to-implant contact, and adhesion strength. Thus, in this study, the surface topography, chemistry, and biocompatibility of polished titanium surface treated with mixed solution of three acids containing hydrochloric acid (HCl)- hydrofluoric acid (HF)- phosphoric acid (H3PO4) were studied under different concentration conditions. Moreover, Osteoblast cell (MG-63) was cultured on the and treated polished titanium surface. Also, in order to investigate titanium surface, SEM, AFM and EDS analyses were carried out. The results revealed that the surface of titanium treated with mixed solution containing the aforesaid acids had higher roughness, cell attachment, and proliferation than the controls
A. Razmjou, F. Noorisafa, N. Emami,
Volume 37, Issue 4 (3-2019)
Abstract

Polyurethane polymer plays an important role in health care, and it is widely used in medical devices and instruments. However, the low biocompatibility and biofilm formation on the surface can be regarded as a challenging issue. Engineering the wetting capability of the surface is an effective way to increase the biodegradability of polymer surfaces with sufficient bulk properties. In this study, the surface modification of polyurethane sheets by a thin layer of polyethylene glycol and trapping of titanium dioxide nanoparticles were carried out by means of physical and chemical changes on the surface to enhance the biocompatibility. The physicochemical properties of the modified surfaces were determined using fourier-transform infrared (FTIR) spectroscopy , scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and contact angle and free surface energy measurement. The biocompatibility of the modified levels was evaluated using the MTT toxicity test on cervical cancer cells (HeLA), bacterial adhesion, biofilm formation, and the protein absorption assay by the Bradford method. A thin, autoclave able and inexpensive thin layer with a solid and stable roughening structure was created covalently on the surface of the polyurethane plates for biological and medical applications. The results, therefore, showed that apart from antibacterial activity, the modified sample also had the ability to reduce the biofilm formation, such that the maximum biofilm attachment inhibition in the first 24 hours was 94% higher than that of the modified sample.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb