M. Kouhi, M. Shamanian, M. Fathi, Molamma Prabhakaran, Seeram Ramakrishna,
Volume 36, Issue 3 (11-2017)
Abstract
In this work, poly (hydroxybutyrate co hydroxyvalerate) (PHBV) composite nanofibrous scaffold containing hydroxyapatite/bredigite (HABR) nanoparticles was fabricated through electrospining method. The morphology of prepared nanofibers and the state of the nanoparticles dispersion in nanofiber matrix were investigated using scanning and transmission electron microscopy, respectively. Evaluation of the mechanical properties of the nanofibrous scaffolds revealed that there is a limit to the nanoparticle concentration at which nanoparticles can improve the mechanical properties of the nanofibrous scaffolds. According to the results, PHBV/HABR nanofibers showed higher wettability compared to PHBV nanofibers. In vitro cell culture assay was done using human fetal osteoblast cells on nanofibrous scaffold. MTS assay revealed that cell proliferation on the composite nanofibrous scaffold was significantly higher than those on the pure scaffold after 10 and 15 days. Scanning electron microscopy- Energy dispersive X-ray spectroscopy and CMFDA colorimeter assay analysis showed that the cells on the PHBV/HABR scaffolds acquired higher mineral deposition than the cells on the pure PHBV and control sample scaffold. Based on the results we concluded that PHBV/HABR nanofibers scaffold with higher wettability, improved mechanical properties and cell behavior hold great potential in bone regeneration applications.
F. Mofid Nakhae, M. Rajabi, H. R. Bakhsheshi-Rad,
Volume 40, Issue 3 (11-2021)
Abstract
Development of bioactive ceramic composite scaffold materials with enhanced mechanical strength has been a topic of great interest in bone tissue engineering. In the present study, β-tricalcium phosphate scaffolds with various amounts of bredigite and an interconnected pore network suitable for bone regeneration were fabricated by the space holder method. The effect of high concentrations of bredigite on the structure, mechanical properties (compressive strength), and in vitro bioactivity was investigated. According to the results, immersion in simulated body fluid (SBF) led to the apatite formation on the surface of the scaffold, but increasing the bredigite content caused the agglomeration of the bredigite phase at the grain boundaries and deteriorated the mechanical properties.