Showing 5 results for Buckling
M.farzin, M. Salmani-Tehrani and S.h. Hashemolhoseini,
Volume 21, Issue 1 (7-2002)
Abstract
In this study, "Buckling Limit of Strain" (B.L.S.) is introduced as one of the most important limiting factors in cold roll forming process. B.L.S. is calculated by the finite element procedure. Then for two particular processes with existing analysis and experimental results, B.L.S. has been determined and evaluated. LUSAS 12.3 is used for finite element analysis. The results show that when buckling of the sheet metal is the limiting factor, B.L.S. is in good agreement with practical limits. It has also been shown that flower pattern can be well predicted when B.L.S. is obtained and this idea is another new outcome from this study. Using this criterion to define and determine B.L.S. and to design the flower pattern is a new concept accomplished for the first time.
Keywords: Cold Roll-Forming, Nonlinear Finite Element Analysis, Local Buckling
A. R. Safari, M. Ghayour, and A. Kabiri,
Volume 25, Issue 1 (7-2006)
Abstract
It is empirically established that, due to a number of factors involved, a classical (linear) analysis of buckling pressure is impossible. Nonlinear theories of buckling are, therefore, required that involve effective factors such as imperfections and welding effects. In this study, models are developed which are as close to allowable standard deviations as possible. In the next stage, their buckling behavior is investigated both experimentally and numerically using finite element packages ADINA, ANSYS, COSMOS, and MARC based on specific capabilities of each. Results show that reasonable estimates of real buckling pressure will become possible when material and geometrical nonlinearities and initial imperfections are introduced into the analytical system. Finally, in the light of the results obtained, a submarine pressure hull is analyzed.
M.h. Enferadi and M. Azhari,
Volume 26, Issue 1 (7-2007)
Abstract
This paper is concerned with elastic local buckling of rectangular plates subjected to intermediate and end inplane loads. Since closed form solution for buckling analysis of plates with different end conditions and subjected to intermediate loads is complicated, numerical methods are more useful. Because of restrictions on the two finite strip methods, the longitudinal B3 spline expressions combined with conventional transverse shape functions are used as displacement functions. This method is computationally more efficient than the finite element method, more flexible in boundary treatment, and more accurate in dealing with point forces and axial loads than the conventional finite strip method. Local buckling coefficients are presented for plates under intermediate and end inplane loads which are useful for design of steel walls or plates that support intermediate floors/loads.
K. Abedi, M.r. Sheidaii,
Volume 26, Issue 1 (7-2007)
Abstract
Considering the vulnerability of double-layer grid space structures to progressive collapse phenomenon, it is necessary to pay special attention to this phenomenon in the design process. Alternate path method is one of the most appropriate and accepted methods for progressive collapse resistant design of structures. Alternate Path Method permits local failure to occur but provides alternate paths around the damaged area so that the structure is able to absorb the applied loads without overall collapse. Following the sudden initial local failure event, severe dynamic effects may arise which should be taken into account in determining the realistic collapse behavior of the structure. In this paper, a new methodology based on alternate path method is presented to apply dynamic effects of initial local failure. The method is called nonlinear dynamic alternate path method. Due to its capability to take account of dynamic nature of the failure, this method can be used to evaluate realistic collapse behavior of the structure and to investigate the vulnerability of the structure to progressive collapse phenomenon.
S.m.h. Mirbagheri, M. Daneshmand, Y. Tabatabaie,
Volume 33, Issue 3 (3-2015)
Abstract
In this paper, the behavior of energy absorption of crush-boxes, made of Aluminum foam advanced material, was investigated based on foam cellular structure homogeneity. Therefore, thin-walled tubes of Cu-Zn30wt.%.brass alloy with 27 mm diameter and 1 mm thickness were filled with A356-10vol.%SiC-Xwt.%. of TiH2 foam liquid. Foam samples with 1, 1.5, 2wt.%. of TiH2 were prepared by Form Grip into the brass tubes in order to produce crush-box .Then the crush-boxes as energy absorber elements were compressed by un-axial loading and then behaviors of progressive buckling foams were measured. Results showed by decreasing A356-10vol.% SiC foam density from 0.93 to 0.88 and then 0.43 g/cm3, the energy absorption would be changed from 12955 to 13465 and then to 11192 J, respectively. The sample with 1.5wt.% of TiH2 and density of 0.88 g/cm3 had the maximum energy absorption. Also, the results of foams cellular structure images showed that foams of homogenous cellular structure had a sizeable effect on the progressive buckling behavior. We developed a new parameter as "sorting coefficient", which can release the foams cellular structure non-homogeneity, and change the crush-boxes energy absorption during the progressive plastic buckling.