Search published articles


Showing 3 results for Co-Precipitation

G. Gordani, A. Ghasemi, A. Saidi,
Volume 34, Issue 4 (3-2016)
Abstract

Nanoparticles of Mg–Co–Ti substituted strontium hexaferrite with nominal composition of SrFe12-2x(Mg,Co)0.5x TixO19 (x=0-2.5) were synthesized by a co-precipitation method. The structural, magnetic and electromagnetic properties of samples were studied as a function of x by thermal gravimetric (TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and vector network analysis. It was found that the synthesis temperature increases with an increase in Mg–Co–Ti substitution and hence the particle size decreases. The XRD results showed that whole samples had good crystallinity and with an increase incations, the impurity phase of Fe2O3 appears. The results of hysteresis loops indicated that the saturation of magnetization of ferrite decreases from 40 emu/g to 19 emu/g with an increase in x. The Mössbauer spectroscopy showed that the cations are substituted in the 12k site of magnetoplumbite structure. Vector network measurements showed that the doped samples had much more effective reflection loss values than those of undoped ferrites. As a result, Mg–Co–Ti doped Sr-hexaferrites with x=2 can be proposed as suitable absorbers for applications in microwave technology with a good deal of consistency.


H. R. Karimi, H. Mansouri, M. R. Loghman Estarki, M. Tavoosi , H. Jamali,
Volume 40, Issue 1 (5-2021)
Abstract

This study aimed to compare the phase changes and morphology of yttria-stabilized zirconium oxide powders (YSZ) synthesized by co-precipitation and molten salt methods. Ammonia precipitating agent was used for the synthesis of YSZ powder by co-precipitation method and a mixture of sodium carbonate and potassium carbonate salts was used as a molten salt in the molten salt method. Samples were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) analysis. The results showed that only the sample prepared with zirconium oxychloride and yttrium nitrate by co-precipitation method had a single phase of yttria-stabilized zirconium oxide with tetragonal crystal lattice and particle size distribution in the range of 30 to 55 nm. The powder synthesized by the molten salt method contained a mixture of zirconia with monoclinic crystal lattice and yttria stabilized zirconia with tetragonal crystal lattice and particle size of 200 nm.

Sh. Talebniya, M. R. Saeri, I. Sharifi, A. Doostmohammadi,
Volume 41, Issue 1 (8-2022)
Abstract

Magnetic nanoparticles are of interest in various research fields such as magnetic fluids, catalysts, biotechnology, medicine, information storage, and environmental issues. However, spinel ferrite magnetic nanoparticles with proper magnetic properties could not be used alone in these applications because of their lack of biocompatibility and instability in aqueous solutions. Surface coating is an effective strategy to eliminate or minimize this issue. In this study, FeFe2O4 and ZnFe2O4 spinel ferrites were synthesized using the reverse co-precipitation method under a nitrogen gas atmosphere. The magnetic behavior of the particles, determined by a vibrating magnetometer (VSM) showed the saturation magnet (Ms) values of the FeFe2O4 and ZnFe2O4 spinel. Fourier-transform infrared (FTIR)  spectra showed two high-frequency bands v1 and v2 at about 554-578 and 368-397 cm-1, respectively, which were related to the spinel structure. Finally, the synthesized FeFe2O4 nanoparticles were coated with chitosan and polyethylene glycol (PEG) biopolymers. The TEM and FTIR analysis indicated that the magnetic nanoparticles were uniformly coated by the biopolymers.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb