Search published articles


Showing 7 results for Composite Coating

M. Mazrooei Sebdani, M. H. Fathi ,
Volume 31, Issue 2 (12-2012)
Abstract

Despite excellent bioactivity of bioactive ceramics such as hydroxyapatite, their clinical applications have been limited due to their poor mechanical properties. Using composite coatings with improved mechanical properties could be a solution to this problem. Therefore, the strength of metal substrate and the bioactivity of the improved composite coating combined could yield suitable results. The aim of this work was fabrication and characterization of hydroxyapatite-forsterite-bioactive glass nanocomposite coating. The sol-gel technique was used to prepare hydroxyapatite-forsterite-bioactive glass nanocomposite in order to coat on 316L stainless steel (SS) by deep coating technique. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray analysis (EDX) techniques were used to investigate the microstructure and morphology of the prepared coating. The results obtained from XRD analysis showed that the suitable temperature for calcination is 600 °C. At this temperature, the homogenous and crack-free coating could attach to the 316L SS substrate. The crystallite size of composite coatings determined via AFM was lower than 100 nm. Overall, the results obtained from this work indicate that hydroxyapatite-forsterite-bioactive glass nanocomposite coating can be a good candidate for biomedical applications.
B. Bakhit, A. Akbari,
Volume 31, Issue 2 (12-2012)
Abstract

Composite and nanocomposite Ni-Co/SiC coatings were synthesized by electro-codeposition of micro and nano-sized SiC particles with average diameter of 10m and 20nm using horizontal electrodes. Surface morphology, chemical composition, phase composition, hardness and corrosion resistance of the deposited coatings were studied using SEM observations and EDX, XRD, microhardness and polarization measurements as a function of the electrodeposition current density. The results indicated that the nanocomposite coatings exhibit higher hardness and corrosion resistance compared with the composite coatings containing micro-sized SiC particles despite their lower percentage of the SiC content. The maximum hardness values of 615HV and 490HV were obtained for nanocomposite and composite coatings deposited at current density of 3A/dm2. The observed properties were discussed based on the structural details.
M. Fazel, M.r. Garsivaz Jazi1, S. Bahramzadeh, S.r. Bakhshi, M. Ramazani, A. Bahramian,
Volume 34, Issue 1 (5-2015)
Abstract

Ni–SiC composite coatings are successfully employed as a protective coating in the inner walls of engine cylinders. In this study, Ni-SiC, Ni-SiC-MoS2 and Ni-SiC-Gr composite coatings were prepared from a sulfamate bath. Both mechanical and ultrasonic stirring were used simultaneously during the process. Taking into account the working temperature of engine cylinders, the wear behavior of coatings was evaluated at 25 to 300 ºC and the high temperature tribological properties of the coatings were investigated. Based on the results obtained from the wear tests, all three coatings showed almost good friction coefficient values at 25 and 100 ºC, which were close to each other. By increasing the temperature to 200-300 °C, the friction coefficient and weight loss values strongly increased. However, addition of solid lubricants caused the values to decrease. The Ni-SiC-Gr coating at all temperatures showed a good and stable behavior.


M. Alizadeh, A. Cheshmpish,
Volume 37, Issue 2 (9-2018)
Abstract

In this research, Ni-Mo-Al2O3 composite coatings were electro-deposited on the mild carbon steel in a citrate bath containing micro- sized Al2O3 particles. Afterward, the effect of the particle concentration in the electrolyte bath (ranging from 0 g/L to 30 g/L) on the microstructure, microhardness, and corrosion performance was evaluated. To investigate the microstructural changes and the surface morphology of the coatings, as well as the particle distribution in the deposits, optical and scanning electron microscopy coupled with the energy dispersive X-ray spectroscopy was utilized. The corrosion behavior of the prepared coatings was investigated in a 3.5 wt. % NaCl solution. The results showed that the presence of the Al2O3 particles in the Ni-Mo coatings changed the  microstructure and also, increased the  microhardness and corrosion resistance of them. It was also found that the desirable structure of the protruding crystallite morphology with no detectable pores could  be achieved at the medium concentrations of reinforcement (e.g. 20 g/L). Further the optimum concentration of the particles in the electrolyte bath to attain the composite coating with the desirable microstructure and consequently, the desirable corrosion resistance was found to be 20 g/L.

Sh. Tavakoli Dehaghi, S. Darvishi, Sh. Nemati, M. Kharaziha,
Volume 37, Issue 3 (12-2018)
Abstract

Abstract: With the advances in the development of biomaterials for tissue replacement, the attention of scientists has been focused on the improvement of clinical implant properties. In this regard, despite the appropriate properties of the stainless steel, the application of stainless steel as implants has been limited due to the weak corrosion resistivity. The purpose of this paper was preparation and characterization of hydrophobic polydimethylsiloxane (PDMS)-SiO2-CuO nanocomposite coating on the 316L stainless steel surface. The 316L stainless steel was coated by SiO2 nanoparticles (20 wt. %), CuO nanoparticles (0.5, 1 and 2 wt. %) and biocompatible PDMS. In this research, x-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied to characterize the coating. Moreover, the roughness and water contact angle of the coatings consisting of various amounts of CuO nanopowder were estimated. Finally, the effects of various amounts of the CuO nanopowder on the corrosion resistivity of nanocomposite coatings were investigated. XRD patterns confirmed the presence of crystalline CuO nanoparticles on the substrate. Due to the non-crystalline nature of silica nanoparticles and the semi-crystalline PDMS polymer, no peak confirming the presence of these phases was detected on the XRD pattern of the nanocomposite coating. SEM images showed the formation of a lotus leaf-like layer on the surface of the nanocomposite coating containing 1 and 2 wt. % CuO. Moreover, water contact angle evolution revealed that while contact angle was 81 degree without CuO nanoparticles, it was enhanced to 146 degree in the presence of 1 wt. % CuO. Moreover, the corrosion study showed the nanocomposite containing 2 wt.% CuO had the best corrosion resistance, the corrosion current density of 2.1E-7 A.cm-2, and the corrosion potential of 0.22 V.

S. Arjmand, M. Tavoosi,
Volume 39, Issue 3 (12-2020)
Abstract

The present work aims to modify surface properties of pure Ti by development of Ti-Al-N intermetallic composite coatings. In this regard, tungsten inert gas (TIG) cladding process was carried out using Al 1100 as filler rod with Ar and Ar+N2 as shielding gases. Phase and structure of the samples were investigated by X-ray diffraction (XRD) technique, optical microscopy (OM) and scanning electron microscopy (SEM). Hardness values and corrosion behavior of the obtained coatings were also compared using Vickers microhardness tester and potentiostat, respectively. The results showed that composite structure containing Al3Ti, Ti3Al2N2 and Ti3Al intermetallic compounds could be formed on the surface of pure Ti. Amounts of brittle phases and welding defects at the titanium-coating interface were least by welding under pure Ar shielding. Despite the increasing amount of structural defects such as porosity and non-uniformity under Ar+N2 shielding, the prepared coatings had higher hardness (more than 100 HV) and corrosion resistance (more than twice) compared with those obtained under Ar shielding.
 
S. Arjmand, G. H. Akbari, G. R. Khayati,
Volume 39, Issue 4 (2-2021)
Abstract

The purpose of the present work is to investigate the influence of the number of weld-passes on microstructure, hardness and residual stresses of composite coatings composed of Ti-Al-Si intermetallic compounds. In this regard, surface coating of pure Ti was carried out using one and two passes of tungsten inert gas (TIG) welding with an Al filler alloy (grade 4043). Phase and structural evaluations of the coatings were investigated by X-ray diffraction, optical and scanning electron microscopies. microhardness and residual stress values of the coatings were measured using ASTM E384-HV device and the Sin2ψ method, respectively. The results showed that as the number of welding passes increased or the dilution ratio decreased, the volume fraction of Ti5Si3-Al3Ti intermetallic phases within the fusion zone increased and the volume fraction of martensite phase in the heat affected zone decreased. As a result, the average hardness value of the coating increased to be about 130 % compared to that of the pure Ti substrate. The tensile residual stresses at the center line of fusion zone were 165 ± 30 and 210 ± 35 MPa for the coatings prepared in one and two welding passes, respectively.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb