Search published articles


Showing 3 results for Corrosion Behavior

M. Talebian, M. Alizadeh, M. Ehteshamzadeh,
Volume 33, Issue 2 (3-2015)
Abstract

In this study, Al/Steel multilayer composite was produced by accumulative roll bonding (ARB) process using Al-1100 and St-12 strips. Microstructure, mechanical properties and corrosion behavior of the composite were studied by scanning electron microscopy (SEM), tensile test, Vickers microhardness tests, cyclic polarization and electrochemical impedance spectroscopy (EIS) measurement in 3.5 wt% NaCl solution. After one ARB cycle (2 roll-bonding cycles), the multilayer composite of 4 layers of Al and 2 layers of steel was produced. The tensile strength of the Al/steel multilayer composite reached 390.57 MPa after the first ARB cycle, which was 1.29 times larger than that of the starting steel while composite density was almost half the density of the steel. Corrosion behavior of the composite revealed a considerable improvement in the main electrochemical parameters, as a result of enhancing influence of cold rolling. The results indicated that strength and corrosion resistance of Al/steel composite generally decreases and elongation increases after annealing.
Z. Ansari, M. Alizadeh, A. Sadeghzadeh Attar,
Volume 33, Issue 2 (3-2015)
Abstract

In this study, mixed metal oxides Al2O3/MgO/TiO2 coatings with Al/Mg/Ti ratios of 5:1:3 and 2.5:3:4 were coated on AA1100 aluminum by sol-gel method. The surface morphology, phase analysis and the corrosion behavior of the Al2O3/MgO/TiO2 coatings were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and electrochemical impedance spectroscopy measurements (EIS) in 3.5 wt.% NaCl solution. The thermal behaviors, the bonds configuration, and functional groups of the coated samples were studied by thermo-gravimetric and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FTIR), respectively. The results demonstrated that heat treatment at 450 °C caused an increase in porosity and coating cracking, finally leading to the decrease of corrosion resistance. The best corrosion resistance was achieved for the sample with Al/Mg/Ti molar ratio of 5:1:3 without any heat treatment. The structure of this sample was amorphous, and heat treatment resulted in crystallization and decrease of the corrosion resistance.
F. Bodaghi, M. Atapour, M. Shamanian,
Volume 34, Issue 3 (12-2015)
Abstract

Aluminium 5xxx alloys excellent properties make them suitable for many industrial applications. The corrosion behavior of this alloy family in industrial environments such as sea water is the main focus of many researches. Due to need for joining large segments of this alloys, the effect of single as well as multipass (double and triple pass) gas metal arc welding (GMAW) on microstructure and corrosion behavior of Al5083-H321 alloy was studied. For this purpose, ER5183 filler metal was used. Microstructures were evaluated using optical and scanning electron microscopy (SEM). Corrosion measurements were performed using open circuit potential test, immersion test in 3.5%NaCl solution and polarization tests. Results indicated that the corrosion resistance of the two passes weldment was improved in comparison with the base metal and its icorr and Ecorr were equal to 0.087´10-6 (µA/cm2) and -0.4395 (V), respectively.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb