Search published articles


Showing 2 results for Design of Experiments

S. Z. Shafaie, S. Banisi, M. Karamozian and A. Islami,
Volume 23, Issue 1 (7-2004)
Abstract

Process optimization is one of the most important activities in today's competitive industries. the rather high cost of research and development has necessitated the development of experimental methods by which the factors affecting processes could be determined with minimum number of experiments. Over the last two decades, various types of experimental designs have been used. Among the different methods of experimental design such as complete and partial factorial and Latin squares design, the Taguchi method has found wide applications in some industrial divisions because of its comprehensive nature. In this paper, the laboratory scale flotation of the Sarcheshmeh copper ore which mainly consists of chalcocite was studied using the Taguchi method. The effects of seven factors namely collectors, Z11 (Xanthate) and R407 (Methyl isoboutyl carbonyl), frothers, pine oil and A65 (Polypropylene glycol), particle size, pH and flotation time were investigated. In addition to a significant reduction in cost and time of experimentation, the results indicated that a 5% increase in copper recovery could be obtained if all the factors are tested at their high experimental levels, as suggested by the Taguchi method. The optimal flotation time was also found to be 11 minutes.
H. Mirzaaei Ghasabe, A. Zakeri, Sh. Mirdamadi, M. Ghorbanzadeh,
Volume 37, Issue 3 (12-2018)
Abstract

In this study, the recovery of lithium from the cathode of the spent Li-ion batteries of the LiNixMnyCozO2 type was investigated. After complete discharging and dismantling, the cathodic section was cut and its aluminum content was selectively dissolved in 2.5 M NaOH solution at room temperature for 2 hr. In the next step, selective dissolution of lithium by oxalic acid from the de-aluminized cathode material was investigated and optimized using the response surface methodology of  the central composite design. The effect of three parameters of time (35-100 min), temperature (40-70 °C), and oxalic acid  concentration (0.5-1.2 M) on the lithium recovery percentage and manganese concentration was studied as the response variables. According to the statistical analysis of the results and the developed models, an optimum condition (T = 70 °C, t = 122 min and oxalic acid concentration of 1.1 M) was suggested and verified experimentally, resulting in the lithium recovery of about 95% and Mn2+ concentration of about 110 mg/L.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb